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Abstract: In recent years, the field of Natural Language Processing (NLP) has seen significant growth in the study of 
word representation, with word embeddings proving valuable for various NLP tasks by providing representations that 
encapsulate prior knowledge. We reviewed word embedding models, their applications, cross-lingual embeddings, 
model analyses, and techniques for model compression. We offered insights into the evolving landscape of word 
representations in NLP, focusing on the models and algorithms used to estimate word embeddings and their analysis 
strategies. To address this, we conducted a detailed examination and categorization of these evaluations and models, 
highlighting their significant strengths and weaknesses. We discussed a prevalent method of representing text data 
to capture semantics, emphasizing how different techniques can be effectively applied to interpret text data. Unlike 
traditional word representations, such as Word to Vector (word2vec), newer contextual embeddings, like Bidirectional 
Encoder Representations from Transformers (BERT) and Embeddings from Language Models (ELMo), have pushed 
the boundaries by capturing the use of words through diverse contexts and encoding information transfer across 
different languages. These embeddings leverage context to represent words, leading to innovative applications in 
various NLP tasks. 

Keywords: Word Embeddings, Word Representations, NLP, Contextual Embeddings, BERT, ELMo, Word2Vec, 
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1. INTRODUCTION

Words are components of any speech belonging to 
meaning as well as significance. Further, characters 
of any written word never have a bit of significant 
sense by themselves, which shows that characters 
can’t present a powerful sense of the written word 
individually. For instance, Book and Pen tend to 
be related to one another, but it is most unlikely 
that we will evaluate or come across the value 
of this relevancy by using only the characters 
of this pair of words [1]. Word embeddings are 
frequently described as models for strings that fulfil 
the essential function of providing meaningful 

representations for words or phrases. Moreover, 
word embeddings represent words within a 
continuous vector space, allowing for the modelling 
of well-defined relationships among them. In this 
space, words are arranged into vectors with familiar 
properties, establishing meaningful connections 
through geometric relationships [2-4].

The influence of word embeddings largely 
depends on their ability to capture natural 
language and geometric relationships. They allow 
expeditious end-to-end modules by modulating 
an exceptional real-life representation right into 
an unremitting space; because of this, they are 



well-liked in natural language processing (NLP) 
subjects: they will be easy to plug into deep learning 
modules [5]. Sentiment analysis stated that physical 
object recognition and many other everyday jobs 
surpassed their renowned matching part with 
these techniques. We are primarily concerned with 
word embeddings learned on the trained corpus. 
This group of representations is creating an effort 
to compile a complete plain text useful dataset 
into an unceasing vector representation with no 
professional familiarity. Thus, in this survey, we 
accept this claim that the logic of a word enormously 
relies on the words neighbouring it. Other word 
embedding practices enhance this supposition and 
usage of a language model to shape contextualized 
word representations, such as BERT [6]. Recent 
advancements in areas such as sign language 
translation [7], healthcare signal processing [8], 
and vehicle detection [9] further illustrate the 
versatility of deep learning models in enhancing 
communication and accuracy across diverse 
applications. Finally, a distinctive technique is to 
build vectors using familiarity or another basis of 
experienced knowledge; an example is the TransE 
approach, as described by Cano and Morisio [10].  
The process of training and using word embeddings 
for a machine learning objective is illustrated in 
Figure 1 [11].

Previously, feature engineering NLP involved 
evolving vital mathematical functions to symbolize 
relevant sides of the text, such as the relation 
of pronouns to nouns. This method frequently 
required important domain information plus energy 
to find significant features [12]. Differently, word 
embeddings can be studied from the text’s corpus 
and don’t need any feature extraction or manual 
labelling; they are usually known in an unsupervised 
method [13]. So, we can say that word embeddings 
can be straightforwardly learned on whichever 
text data corpus. Word embedding is divided into 
two types: contextual and non-contextual word 
embeddings. The differentiation between these two 
types is that either the word embedding changes 
dynamically according to the context in which it 
appears or not.

Regardless of an excess of related works 
reachable on language models, word embeddings, 
and their advancements plus applications, no 
comprehensive survey collecting the detailed 
work done on word embeddings exists up to now. 
The current paper discusses the recent advances 
and innovations in word embeddings. In a study, 
Font and Costa-Jussà [14] employed a transfer 
translation architecture to examine incorporating 
two debiasing techniques using Global Vectors for 
Word Representation (GloVe) embeddings. The 
researchers put forth and assessed a scheme on the 
WMT English-Spanish benchmark task, observing 
improvements of up to one Bilingual Evaluation 
Understudy (BLEU) point. Regarding gender bias 
assessment, the researchers generated a collection 
of occupations and demonstrated that their system 
can mitigate inherent biases in the baseline system. 
Rezaeinia et al. [15] introduced Improved Word 
Vectors (IWV), a novel technique designed to enhance 
the accuracy of sentiment analysis by leveraging 
pre-trained word embeddings. Their methodology 
incorporated several approaches, including part-of-
speech (POS) tagging, lexicon-based strategies, a 
word position algorithm, and Word2Vec or GloVe 
methods. Their plan’s accuracy was validated 
using deep-learning models and benchmark 
datasets designed explicitly for sentiment analysis. 
The results of their experiment about sentiment 
analysis demonstrated the high effectiveness of 
IWV. Yao et al. [16] developed several intuitive 
evaluation methods for temporal word embeddings. 
Their quantitative and qualitative analyses indicate 
that their methodology consistently captures 

Fig. 1. Schematic representation of training word 
embeddings to use them for Machine learning objectives 
[11].
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evolutionary patterns. Furthermore, their approach 
steadily overtakes current state-of-the-art material 
embedding methods regarding semantic accuracy 
and structural quality. Zhao et al. [17] performed 
a series of intrinsic analyses, revealing several key 
findings. Firstly, ELMo, a language representation 
model, was observed to contain a significantly 
higher number of male objects than female objects. 
Secondly, the ELMo embeddings consistently 
incorporate gender-related information. Lastly, 
the encoding of gender data in ELMo was found 
to be uneven, with a noticeable disparity between 
male and female objects. Moreover, the researchers 
demonstrated that a prior system reliant on ELMo 
exhibits bias and identifies significant bias within 
the WinoBias dataset. Finally, the researchers 
examined two methodologies to mitigate gender 
bias and demonstrated the potential for eliminating 
the bias observed in the WinoBias dataset.

In recent years, the era of significant data has 
brought about challenges related to information 
overload. Addressing these challenges, Du et 
al. [18] aimed to achieve precise and automatic 
categorization of Internet news edition data. 
Recognizing the limitations of single-topic 
and word embedding models, they planned a 
novel text representation method that combined 
Glove models, Word2VEC, LDA, and TF-IDF. 
Additionally, Suhartono et al. [19] introduced two 
CNN architectures that incorporated Glove and 
Word2Vec word embeddings to analyze sentiment 
in drug reviews, utilizing deep learning methods, 
for instance, BERT and RoBERTa. Haller et al. 
[20] provided a comprehensive taxonomy of ways 
in the field, spanning classical Machine Learning to 
Deep Learning approaches while emphasizing the 
need for adaptations in Deep Learning architectures 
for NLP to tackle evolving challenges in ASAG 
tasks. Gender bias in static word embeddings 
was scrutinized by Caliskan et al. [21], revealing 
preferences in semantic suggestions, word 
frequency, parts of speech, clustered concepts, 
word frequency, term, parts of speech, and word 
meaning dimensions. Meanwhile, Tang et al. [22] 
proposed an unsupervised method to learn Dynamic 
Contextual Word Embeddings (DCWEs) through 
time-adapting a pre-trained MLM using manual and 
automatic templates. Alnajjar et al. [23] contributed 
to the field by creating a sentiment analysis corpus 
for endangered languages and Finnish. The 
study conducted by Yen and Jeon [24] achieved 

significant accuracy improvements in embedding-
matching A2W systems by generating multiple 
embeddings and incorporating pronunciation-
based embeddings. Engler et al. [25] introduced 
SensePOLAR, offering word sense-aware 
interpretability for contextual word embeddings. 
Schiffers et al. [26] developed word embeddings 
tailored for the social sciences and compared them 
to general language models in a domain-specific 
context. Lastly, Zaland et al. [27] comprehensively 
evaluated existing word embedding algorithms on 
extrinsic classification tasks, shedding light on how 
these models encode word relations. The study by 
Worth [28] highlights that advancements such as 
Word2Vec, GloVe, ELMo, and BERT embeddings 
rely on the idea that a word’s semantic meaning is 
shaped by its distributional properties within a text 
corpus. The study by Das and Kamlish [29] shows 
that knowledge about words’ meaning helps make 
summaries better and more accurate. This research 
benefits tasks like finding information, organizing 
documents, and extracting knowledge. The new 
method also makes summarizing text easier and 
reduces the need for manual work. It shows how 
important it is to understand language when using 
automated tools. This method helps deal with the 
vast amount of text we have today. Abro et al. [30] 
combined Word2Vec and GloVe embeddings with 
a neural network to improve the model. We then 
tested its performance using different learning rates 
across ten developers. The results showed that 
when Convolution was combined with Word2Vec 
embeddings, the model tended to be more accurate 
on average during testing.

2.    REPRESENTING TEXT WITH   
       EMBEDDINGS

This section provides a concise overview of the 
different types of word embeddings. We conduct 
a detailed analysis of a text, focusing on its word 
sequence to explore the contextual relationships 
between the embeddings.

2.1.  Representation of Word Embeddings 

Numerous methodologies, such as Word2Vec, 
GloVe, and FastText, are commonly used to 
examine word embeddings, each employing distinct 
approaches for capturing semantic relationships 
in a corpus. For example, Word2Vec uses neural 
networks to predict word context. At the same 
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time, GloVe captures co-occurrence statistics of 
words in a large corpus, and FastText considers 
subword information, making it more effective 
for morphologically rich languages [31-33]. One 
common approach involves utilizing a one-hot 
encoding technique, which assigns a distinct index 
within a vocabulary dictionary to each word, 
creating a unique representation for every word 
in the corpus. A comment is demonstrated by a 
vector consisting of all zeros except for one within 
an appropriate context. The process of studying 
context-based prediction involves the utilization 
of word embedding strategies. These strategies 
enable mapping one-hot vectors to more compact 
representations, often with lower dimensions than 
vocabulary dimensions. These representations’ 
components capture the language data’s underlying 
symbolic meaning. The fundamental premise is that 
to achieve accurate word prediction, it is necessary 
to enhance and refine the representations of words 
through learning [11].

2.1.1. Word2vec

The Word-to-Vector (Word2vec) technique under 
consideration relies entirely on a predictive 
approach that can be implemented using the 
skip-gram (SG) and continuous bag-of-words 
(CBOW) models [31]. Small neural networks are 
used in Continuous Bag-of-Words (CBOW) and 
Skip-Gram (SG) models to map words to specific 
points in a vector space. The distinction between 
these methods lies in whether the neural network 
endeavours to forecast a target term given its 
context (Continuous Bag of Words, CBOW) or vice 
versa. Two crucial factors determine the training of 
word2vec embeddings, as shown in Figure 2 [34]. 
Firstly, the embedding dimension is between fifty 
and five hundred through experimental methods. 
Secondly, the span of the context window refers to 
the number of words preceding and following the 
target word that is utilized as context for training 
the word embeddings. Additional significant 
hyperparameters are elaborated upon in the 
appendix section. The requirement for a more 
extensive training dataset is typically observed 
when training embeddings with more dimensions. 
It is crucial for each dimension to effectively 
capture a distinct aspect of meaning so that the 
embeddings possess the necessary capacity to 
differentiate between words. Paragraph2Vec and 
Doc2Vec are variants of the word2vec model 

designed to represent documents or paragraphs 
as vectors rather than individual words. There are 
two distinct types of doc2vec models: the PV-DM 
model, like the SG model of word2Vec, and the PV-
DBOW model; both are used to distribute memory 
across paragraphs [35].

2.1.2. GloVe

Global Vectors for Word Representation (GloVe) 
model comprehends word embeddings proficiently 
using a word co-occurrence matrix rather than 
a word calculation job. A co-occurrence matrix 
is a VXV square matrix in which V indicates the 
vocabulary size. Every matrix element represents 
the frequency of occurrence of the specified 
vocabulary objects within a predetermined context 
window that spans the entire corpus. GloVe can 
comprehend vector embeddings, which facilitate 
the reduction of literal errors during the processing 
of co-occurrence statistics required by the model. 
Additionally, it considers the global co-occurrence 
statistics present in the preparation corpus. The 
model comprises multiple hyperparameters that 
must be vigilantly chosen, such as the dimension 
of the vector embedding and the size of the 
perspective window. The word vectors generated 
through the GloVe method exhibit epistemological 
equivalence to those obtained through word2vec. 
However, GloVe employs a count-based model as 
its foundation, in contrast to word2vec’s predictive 
model [35]. GloVe, compared to word2vec, 
is known for its ability to capture longer-term 
dependencies due to its computation of statistics 
over more oversized context windows. However, 
it is essential to note that the order of these 

Fig. 2. Illustration of the Skip-Gram Architecture in the 
Word2Vec Algorithm [34].
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dependencies needs to be preserved. Based on 
empirical observations, discernible advantage has 
yet to be identified for either GloVe or word2vec 
models. The overall reliability of these models is 
contingent upon various factors, such as the kind of 
data and the specific assessment job being measured. 
GloVe embeddings have proven highly effective in 
capturing semantic relationships in various natural 
language processing tasks, as demonstrated in 
recent studies across different application domains 
[36-38].

2.1.3. FastText  

The FastText model extends word2vec and GloVe 
methods, incorporating a specific constraint. This 
model can lever novel, out-of-vocabulary (OOV) 
expressions by utilizing the word2vec skip-gram 
(SG) model, which includes inner subword data 
in character n-grams, representing sequences 
of adjacent characters. This approach entails 
constructing a vector representation for a word 
by considering the combination of its subword 
elements. This approach also enables the model to 
capture the structural and linguistic relationships 
between words and facilitates the creation of vectors 
for previously unanticipated words. Probabilistic 
FastText is a methodology used to combine 
FastText and Gaussian Mixture Models (GMMs). 
Howard and Ruder [39] did not provide any text to 
rewrite. The representation of each word is depicted 
as a Gaussian Mixture Model (GMM) consisting 
of n mechanisms, effectively capturing n distinct 
senses or meanings associated with the word. This 
representation can analyze the sub-word structure, 
distinguish between dissimilar word senses, and 
deliver improved representations of infrequent 
or hidden words. Recently, FastText has been 
widely applied in various fields of natural language 
processing, demonstrating its effectiveness in tasks 
such as sentiment analysis, cybersecurity, and 
machine learning applications [40-43].

2.1.4. ELMo

Embedding from Language Model (ELMo) is a 
language representation model emphasising words 
through character-level and word-level embeddings. 
Instead of employing a stable embedding for 
every word, ELMo evaluates the entire sentence 
and assigns each word an embedding [44]. The 
embeddings are constructed utilizing a trained 

bidirectional recurrent neural network (RNN) for 
a particular task. The embedding’s bidirectional 
architecture is based on both preceding and 
subsequent words. One significant innovation of 
ELMo is the incorporation of task-specific weighting 
coefficients for the embeddings. It allows the model 
to be trained on one objective or task and then applied 
to a different task, effectively combining shared 
information while focusing on specific semantic 
aspects. Integrating ELMo word embeddings with 
deep learning multimodal transformers has shown 
promising results in enhancing image description 
tasks, as demonstrated in recent research by Cheng 
et al. [45]. In a recent study by Rong et al. [46], 
the advancements in multimodal deep learning, 
particularly integrating ELMo word embeddings 
with transformers, have significantly improved 
image description capabilities.

2.1.5. CoVe

Contextualized Word Vectors (CoVe) use a 
profound Long Short-Term Memory (LSTM) 
encoder derived from a cognitive sequence-
to-sequence model specializing in machine 
translation [47]. This method is cast to provide 
word vectors with context. CoVe word embeddings 
are a mechanism for processing the entire input 
sequence. From an architectural standpoint, this 
model is characterized by its simplicity and lack of 
logic. The initial step is deleting the dual-layer, one-
way LSTM encoder from the machine translation 
(MT) model. The process encrypts the static pre-
trained GloVe embeddings used as context vectors. 
These context vectors are appended to the GloVe 
embeddings and provided as input to subsequent 
NLP tasks. CoVe has improved in numerous NLP 
charges, including sentiment analysis, question 
classification, entailment, and question answering 
[48]. Furthermore, it has brought attention to the 
dynamic manifestation of language.

2.1.6. ULMFit

The technique known as universal language model 
fine-tuning (ULMFit) was initially presented by 
Luong et al. [49]. This approach frequently employs 
language modelling, specifically utilizing LSTM 
networks to leverage extensive untagged statistics 
effectively. Precisely, the ULMFit model consists 
of three distinct phases:
• To acquire knowledge about linguistic 
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characteristics, a language model undergoes 
training using a substantial corpus of commonly 
used language.
• Subsequently, the model is refined by training it 
on a specific corpus of job-related texts, allowing it 
to understand job-specific language patterns better.
• Lastly, the model undergoes an advanced 
fine-tuning process, incorporating objective 
classification of job-related entities.

Moreover, the previously proposed two 
effective strategies, namely slanted triangular 
studying rates and discriminative fine-tuning, 
to enhance the fine-tuning process of objective-
domain language models. Each neural network 
layer possesses distinct significance, with higher 
layers capturing semantic information and lower 
layers representing syntactic information. Hence, it 
is imperative to consider the unshared learning rate 
as the primary indicator of prejudicial fine-tuning. 
Ideally, the model can retain the knowledge acquired 
from the standard domain data while developing 
the latest features specific to the target domain. 
Additionally, the algorithm must exhibit rapid 
convergence towards an appropriate initial state 
during training, gradually refining the parameters. In 
pursuit of this objective, the proposal suggests using 
sloped triangular learning rates, characterized by a 
gradual initial increase followed by a subsequent 
linear decay. One main advantage of using a 
small learning rate is effectively preserving data 
in the pre-trained parameter. To address the issue 
of catastrophic forgetting, researchers proposed a 
gradual unfreezing approach known as the step-
by-step unfreezing mechanism. This involves 
unfreezing the pre-trained model, starting from the 
last layer and progressing gradually. Additionally, 
three new fine-tuning tactics were introduced, 
which have gained popularity in subsequent 
research. As a result of these advancements, 
ULMFit has demonstrated superior performance to 
the present state-of-the-art models across seven text 
classification tasks.

2.1.7. XLNet

XLNet (eXtra Long Network) is a generalized 
autoregressive pretraining model for language 
understanding. It extends the Transformer-XL 
model and improves upon BERT by leveraging 
a permutation-based autoregressive approach 
to model word sequences. It allows XLNet to 

capture bidirectional context while maintaining the 
advantages of autoregressive models [50]. BERT 
is an autoencoding pre-training method connected 
to the latest autoregressive (AR) techniques used 
to calculate a text corpus’s probability distribution 
using autoregressive models such as GPT and 
ELMo. The primary goal of BERT is to rebuild 
the unique data from corrupted input. Given that 
the compactness approximation is excluded from 
the objective of the BERT model, it can readily 
leverage bidirectional contexts for reconstruction 
purposes. Furthermore, this analysis aims to 
provide a comprehensive examination of the 
observed advantages of this method compared to 
the most recent augmented reality (AR) techniques. 
Nevertheless, using Artificial representations, such 
as [MASK], has indicated a discrepancy between 
the pre-training and fine-tuning processes, leading 
toward a need for more consistency between the 
two. Moreover, the BERT model adheres to the 
notion that the predicted tokens are independent, 
potentially compromising its ability to effectively 
capture long-range, high-order dependencies 
prevalent in natural language. A pre-trained non-
specialized autoencoder (AE) strategy relies 
on transformer-xl to address such issues. This 
approach leverages bidirectional contexts to 
enhance the predictability of various factorization 
orders and surpasses the limitations of BERT 
through autoregressive preparation. Moreover, 
XLNet employs the permutation language 
modelling objective, combining the compensations 
of autoencoding and autoregressive approaches 
while mitigating their limitations [51].
  
2.1.8. BERT

The language representation model Bidirectional 
Encoder Representations from Transformers 
(BERT), developed by Devlin et al.  [52], is 
designed to understand language by looking at both 
the left and right context of words in a sentence at 
the same time, making it more effective than earlier 
models [39, 44] that only considered one direction 
at a time. In the study, Devlin et al. [52] proposed 
a model founded upon a multilayer bi-directional 
transformer-encoder that serves as a contextualized 
word representation model. Unlike traditional 
sequential recurrence, this model employs parallel 
tending layers within the transformer neural 
network. The present model has undergone pre-
training on two unsupervised tasks: The proposed 
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approach involves utilizing a covered language 
model, wherein approximately 15% of the tokens 
are unsystematically replaced with a unique 
“[MASK]” token. The standard is then proficient 
to predict the masked tickets. Additionally, a 
subsequent sentence prediction (NSP) task is 
employed, wherein the model is presented with 
a set of sentences and trained to identify whether 
the second sentence logically follows the first. 
This second task aims to gather more information 
on enduring or practical aspects. BERT is trained 
on a corpus of a book and text paragraphs sourced 
from the English language Wikipedia. The corpus 
contains approximately eight hundred words. Two 
sizes are available for pre-trained BERT models, 
namely BERT-base and BERT-large. BERT can 
be employed by directly using the pre-trained 
model on unannotated data or fine-tuning it on 
task-specific data. The pre-existing anonymized 
model and accompanying code for fine-tuning 
can be accessed through online platforms. The 
user’s text needs more information to be rewritten 
academically. Numerous domain-specific iterations 
of BERT have undergone training or fine-tuning on 
text specific to a particular domain. Some examples 
of these iterations include: 

• BioBERT is a modification of the BERT model 
specifically adapted for biomedical script analysis 
[53]. Its architecture has been modified and pre-
trained using a large corpus of PubMed descriptions 
and PMC full-text snippets. The system is optimized 
for biomedical text mining tasks, including question 
answering, entity identification NER, and relation 
extraction. 

• ClinicalBERT is proficient in clinical text from 
the publicly available mimic-iii database, which 
contains about 2 million clinical notes [54]. The 
model was introduced to the following types of 
messages:
i. Clinical BERT
ii. Clinical bioBERT
iii. Discharge summary BERT
iv. Discharge summary bioBERT

• SciBERT proficiently uses an arbitrary sample 
of 1.14 million semantic scholar full-text papers. 
SciBERT is a model that undergoes unsupervised 
training on various scientific publications from 
various fields. This pre-training helps boost its 
effectiveness in handling scientific NLP tasks [55]. 

There are four forms of Seibert: 
i. The Cased (Both uppercase and lowercase 

vocabulary).
ii. The Uncased (Only lowercase vocabulary).
iii. Those models which are using BaseVocab. 
iv. Those models are models using SciVocab and 

are trained from scratch. 

2.1.9. MorphoRNN

Using word n-grams enables more efficient 
exploitation of the complex internal semantics. 
However, English is characterized by numerous 
meaningful affixes, including prefixes, roots, and 
suffixes. In a study, Sennrich et al. [56] introduced 
the concept of morphology to progress the learning 
process of word embeddings. A representation 
of the subword is obtained by training the fix 
with RNN. The embedding of the parent word is 
determined by considering all morphemes except 
those discussed by Xu and Liu [57], who focus 
on morphological aspects. RNN models linguistic 
units on a morpheme level instead of a word level. 
In their analysis, scholars consider the morpheme 
the fundamental natural language unit, conveying a 
unique vector to each morpheme for classification 
purposes. The embeddings of morphological texts 
are derived from the embeddings of their basic 
morphemes.  An additional parent word embedding 
is derived by combining a stem and affix embedding.

2.1.10. MWE

Multi-Word Expressions (MWEs) are fixed or semi-
fixed expressions that consist of multiple words 
but function as a single semantic unit [58]. Using 
word vector models to incorporate prior knowledge 
is a commonly employed technique for improving 
performance. The general practice represents a 
word’s suffix, root, and prefix as separate tokens. The 
objective of MWE is to use a stylized approach in 
conveying the combined significance of a suffix and 
a prefix [57]. The model has been constructed based 
on the hypothesis that all meanings of morphemes 
in a token have equal help to the given structure 
of tokens, denoted as w = {w1, w2, ..., wn}. We 
aim to determine the meanings for each morpheme, 
characterized as mi, for wi (where i ranges from 1 
to n). The term “mi” can be conceptually divided 
into three distinct components, namely “pi,” “ri,” 
and “si.” These components represent the prefix 
denoting a collection or set, the root indicating a 
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group or set in addition to the suffix signifying a 
set of “wi.” Hence, in cases where we serve as the 
contextual basis for wj, the altered representation 
of wi.

Furthermore, numerous studies focus on 
news at the sub-word (SW) level. In their research, 
Sennrich et al. [56] introduced the Byte Pair 
Encoding (BPE) approach, which involves merging 
frequently occurring neighbouring components 
within the subword to enhance word representation. 
Additionally, the authors demonstrated that their 
method outperformed alternative strategies in the 
milieu of neural machine translation tasks. Ustun et 
al. [59] introduced an enhanced logarithmic bilinear 
model (LBL) and emphasized its role in assigning 
morpheme labels. We have compared all pre-trained 
models in Table 1. The research demonstrated that 
this approach resulted in word embeddings that 
effectively preserved morphological interactions. 
Bian et al. [60] combined graphical and textual 
representations to enhance the effectiveness of word 
embeddings, demonstrating improvements through 
experiments involving word analogy, uniformity, 
and completion tasks. Their method employs a 
forward LSTM model to capture the prefix and 
root of a word and a reverse LSTM model to 
acquire the suffix and root, focusing on character-
level information within a word. Cao and Rei [61] 
introduced a char2vec model using a Bidirectional 
Long Short-Term Memory (Bi-LSTM) network to 

generate embeddings for fictional representations, 
succeeding in morpheme boundary recovery and 
syntactic analogy tasks. Regarding morpheme 
boundary recovery, the researchers demonstrated 
that their morphological exploration was like 
that of specialized morphological investigators. 
Additionally, their research performed well 
in answering syntactic analogies. Kim et al. 
[62] introduced a novel approach that utilizes 
Convolutional Neural Networks (CNN) with 
max pooling for word embeddings. They also 
demonstrated that their proposed model could 
reduce the number of variables while enhancing 
performance. 

2.2.  Visualization of Word Embeddings 

The newer word embedding techniques represent 
words in high-dimensional vector spaces, which 
allows them to learn subtle semantic relationships 
between words. The disadvantage of high-
dimensional embeddings is that they are difficult 
to interpret. In most cases, such embeddings must 
be projected in a 2D or 3D space to facilitate 
critical analysis and interpretation. Another 
popular method of word-embedding visualization 
is t-SNE, which projects the embeddings into a 
lower dimension while trying to preserve their 
local structure. It has effectively shown semantic 
clustering, making word-embedding models more 

Method Architecture Encoder Decoder Objective

Word2Vec NN No No Skip-gram and CBOW

GloVe Matrix factorization No No Global word-word co-occurrence Statistics

FastText NN No No Skip-gram and CBOW with sub-word information

ELMo LSTM Yes Yes Language modelling

CoVe LSTM Yes No Language modelling and word prediction

UMLFit NN No No Unsupervised machine learning of word embedding

XLNet Transformer Yes No Masked language modelling and next-sentence prediction

BERT Transformer Yes No Masked language modelling and next-sentence prediction

Morpho-RNN NN Yes No Language modelling with morphological information

MWE NN Yes No Language modelling with multi-word expression information

Table 1. Comparison of pre-trained models.
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interpretable since related words congregate in 
low-dimensional spaces [63]. The effectiveness of 
the visualization method in many studies conducted 
on the performance of various word embedding 
algorithms, such as t-SNE. For example, t-SNE 
has been useful in visualizations to show clear 
clusters of word embeddings emanating from 
models such as Word2Vec and FastText [64]. 
These visualizations display groups of semantically 
similar words, offering insights into the quality 
of representations learned by recent research 
conducted by Bandyopadhyay et al. [65] through 
embeddings used in natural language understanding 
tasks.

These visualization techniques have also 
helped compare word embeddings from a classic 
model and those taken out of more advanced deep 
learning architectures, such as transformers. The 
research by Robinson and Pierce-Hoffman [66] 
have shown the importance of visualising the 
contextualized embeddings that transformer models 
create, such as BERT, where t-SNE and PCA 
have been used to contrast semantic similarities 
and differences amongst word contexts. Such a 
method is useful in understanding how modern 
embedding techniques handle word polysemy 
and context-dependent meanings, giving the 
embeddings more interpretability for downstream 
applications. Similarly, word embedding 
visualizations have discovered significant findings 
in health on the relationship of medical terms with 
their contexts. Therefore, recent efforts leveraged 
visualization methods to analyze embeddings 
derived from electronic health record data that 
exposed meaningful semantic relationships, 
helping in predictive modelling and decision-
making processes [67]. The clustering patterns 
emerging from such visualizations have played an 
instrumental role in enhancing the interpretability 
of medical embeddings, particularly for identifying 
semantically related diagnostic phrases or treatment 
options.

Recent developments in embedding 
visualization have included MDS and UMAP, which 
are increasingly used with t-SNE for improved 
interpretability and scalability. These methods have 
showcased more intuitive visualizations of word 
embedding spaces, especially when dealing with 
large datasets or intricate models. Besides clustering 
words, they can also expose outliers, anomalies, 

and rare occurrences of words in embedding 
spaces, which gives further detailed insight into 
how different models represent such rare terms 
and contexts [68]. Word embedding visualization 
is an essential tool in embedding model analysis 
and interpretation, helping researchers further 
understand relationships and structures within 
data. Visualization techniques such as t-SNE, PCA, 
and UMAP remain vital in handling the quality 
of embeddings, especially in their evolution with 
sophisticated deep learning architectures. These 
visualizations allow intuition to more easily 
understand how embeddings encode semantic 
information of critical importance in developing 
natural language processing and beyond.

3.    HISTORY OF PRE-TRAINED MODELS

Pre-training has consistently been regarded as 
a highly effective methodology for acquiring 
knowledge about the variables within deep neural 
networks, which are refined through fine-tuning 
processes for downstream tasks [69]. The year 
2006 witnessed a significant advancement in 
deep learning, as it saw the resurgence of the 
acquisitive layer-wise unsupervised pre-training 
technique, which was subsequently combined with 
supervised fine-tuning [70]. In computer vision, 
it is a common habit to initially train models on 
the extensive ImageNet dataset, followed by fine-
tuning on smaller datasets for specific tasks. This 
approach exhibits notable advantages compared to 
an unplanned initialization, as the model acquires 
comprehensive image features that can be leveraged 
across various vision-related tasks. In NLP, it has 
been demonstrated that Pre-trained Models (PTMs) 
trained on extensive corpora are helpful for multiple 
downstream NLP tasks, ranging from basic word 
embeddings to complex deep neural models.

3.1.  Abbreviations and Acronyms 

The practice of representative words as fixed-length 
vectors has a longstanding historical background. 
The concept of “modern” word embedding was first 
introduced in the ground-breaking research of neural 
network language models (NNLM). Collobert et al. 
[71] demonstrated that pre-trained word embeddings 
on unlabelled data can significantly enhance 
performance in NLP tasks. To tackle the issue of 
computational complexity, the researchers opted to 
train word embeddings using a pairwise top-ranking 
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job rather than relying on language modelling. This 
study represents the initial endeavour to acquire 
universal word embeddings that can be utilized for 
various tasks using unannotated data. According 
to the findings presented by Mikolov et al. [72], it 
has been revealed that deep neural networks do not 
yield significant benefits in developing effective 
word embeddings. Skip-gram (SG) and Continuous 
bag-of-words (CBOW) models are two shallow 
Architectures proposed by the authors. Despite their 
simplicity, these methods can acquire high-quality 
word embeddings that capture the underlying 
syntactic and semantic similarities between words. 
Word2Vec is widely recognized as one of the 
most standard NLP model implementations. It 
facilitates the use of pre-trained word embeddings 
for multiple NLP tasks. Moreover, GloVe [32] 
is a popular model for gaining pre-trained word 
embeddings. These embeddings are derived from 
global word-word co-occurrence facts extracted 
from a corpus of considerable size. While pre-
trained word embeddings are valuable in NLP 
charges, they often lack context sensitivity and 
are primarily trained using shallow models. When 
employed in a subsequent project, the entirety of 
the classic must still be acquired anew. Numerous 
researchers also endeavour to acquire embeddings 
of textual elements such as reading materials, 
sentences, or reports during the concurrent time 
frame. Examples of these efforts include the 
utilization of paragraph vectors [73], skip-thought 
vectors [74], and context2vec [75]. In contrast to 
their contemporary counterparts, these rudimentary 
sentence embedding models aim to transform 
entered sentences into a vector representation of 
stable dimensions instead of generating contextual 
words for individual tokens.

3.2. Second-generation PTMs: Pre-trained 
Contextual Encoders 

Given that NLP endeavours extend outside the scope 
of individual words, it is customary to pre-train 
neural encoders at the sentence level or higher. The 
vectors produced by neural encoders, commonly 
called contextual word embeddings, modify the 
semantic representation of texts based on their 
surrounding perspective. The primary successful 
example of PTM for NLP was introduced by Dai 
and Le [76]. The authors employ a language model 
LM or a system autoencoder to digitize extended 
short-term memory networks LSTMs. They 

observe that pre-training can enhance the guidance 
process and improve the inductive reasoning 
capabilities of LSTMs in various text classification 
tasks. Liu et al. [77] conducted pre-training of a 
shared LSTM encoder using a language model LM 
and subsequently fine-tuned it within the multi-task 
learning MTL framework. The authors observed 
that incorporating pre-training and fine-tuning 
techniques can significantly enhance the enactment 
of MTL in various text classification tasks. Please 
provide more information or specify what you want 
me to rewrite academically. It has been observed 
that the performance of seq2seq models can be 
meaningfully enriched using unattended pre-
training [78]. The encoder and decoder weights 
are initialized using pre-trained weights from two 
language models. Subsequently, these weights are 
fine-tuned using tagged data.

Furthermore, the contextual encoder can 
be pre-trained with a language model (LM). In a 
study, McCann et al.  [47] utilized a pre-trained 
deep LSTM encoder derived from an attentional 
sequence-to-sequence model employed in machine 
translation (MT). The performance of various 
common NLP objectives can be enhanced by 
utilizing the context vectors (CoVe) generated by 
the pre-trained encoder. The contemporary post-
translational modifications (PTMs) have advanced 
significantly compared to their precursor PTMs. 
They now possess enhanced proficiency in handling 
extensive corpora, employ more robust and intricate 
architectures such as transformers, and engage in 
novel pre-training tasks.

The model proposed by Peters et al. [44] is a 
pre-trained two-layer LSTM encoder incorporating 
a bidirectional language model (BiLM). This 
BiLM comprises both a forward language model 
and a reversed language model. The contextual 
representations generated by the Pre-trained BiLM, 
ELMo (embeddings from language models), have 
yielded significant improvements across diverse 
NLP tasks. Please provide more information or 
specify what you want me to rewrite academically. 
The word meaning was determined using contextual 
string embeddings pre-trained with a character-
level language model [79]. However, these two pre-
trained models (PTMs) are commonly employed 
as feature extractors to generate contextual word 
embeddings. These embeddings are then utilized as 
input for the primary model in downstream tasks. 
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The variables in question are held constant, while 
the previous model’s remaining variables continue 
to be trained from the beginning. The ULMFit 
(universal language model fine-tuning) approach, 
as described by Howard and Ruder in [39], aimed 
to fine-tune a pre-trained language model (LM) for 
the task of text classification (TC). This method 
achieved state-of-the-art results on six commonly 
used TC datasets. The ULM-fit methodology 
comprises three distinct phases: (i) initial training 
of the language model (LM) using common-
domain data; (ii) subsequent fine-tuning of the 
LM using target-specific data; and (iii) further 
fine-tuning of the LM on the specific target task. 
ULMFit additionally incorporates several valuable 
techniques for fine-tuning, namely prejudicial fine-
tuning, sloped triangular learning rates, and step-
by-step releasing.

Lately, there has been a growing recognition 
of the significant capabilities of deep pre-trained 
models (PTMs) in acquiring universal language 
representations. Prominent examples include 
OpenAI GPT (generative pre-training) and BERT 
(bidirectional encoder representation from the 
transformer). Additionally, there is a rising trend 
of introducing a greater variety of self-supervised 
tasks to enhance the acquaintance acquisition of 
these pre-trained models from vast text corpora. 
Following the emergence of ULMFit and BERT, 
fine-tuning has emerged as the prevailing method 
for adapting pre-trained models to suit downstream 
tasks. 

4.    CROSS-LINGUAL WORD EMBEDDINGS

When observing the presence of various languages, 
it becomes evident that approximately seven 
thousand languages are currently in use. However, 
it is essential to note that only a limited number 
of languages possess abundant human-interpreted 
resources. The task at hand involves acquiring 
cross-lingual shift learning of word embeddings. 
We employ a model trained on languages with great 
linguistic resources to accomplish this. This model 
then maps the input embeddings of languages 
with limited resources onto a joint semantic space. 
These embeddings are commonly referred to as 
cross-lingual word embeddings [80]. Founded on 
the classification of monolingual embeddings, 
cross-lingual embedding learning approaches can 
be categorized as dynamic or static. The static 

method has received considerable attention in 
recent studies, while numerous studies are currently 
investigating the active process. Additionally, these 
approaches can be categorized into offline and 
online categories based on the training objective. 
In general, online strategies aim to optimize cross-
lingual and monolingual objectives simultaneously. 
Conversely, offline methods involve utilizing 
pre-trained monolingual word embeddings from 
different languages as involvement and mapping 
them into a shared semantic space [81]. As a survey 
by Ruder et al. [80] noted, most cross-lingual word 
embedding models are optimized using similar 
objective functions, and differences in performance 
often stem from data requirements rather than 
architecture.

4.1.	 Static	Cross‐lingual	Word	Embeddings

When examining still embeddings, it is observed 
that specific methods involve learning language 
models for both objective and source languages. 
These methods then collectively enhance their 
respective objectives by utilizing cross-lingual 
goals. An approach was proposed by Klementiev et 
al. [82] to acquire bilingual word embeddings and 
word alignments simultaneously. Subsequently, 
using the monolingual skip-gram model, the 
researchers endeavoured to develop proficiency in 
bilingual embeddings, encompassing both sentence 
and word-level alignments. The model proposed by 
Lample and Conneau [83] aims to acquire bilingual 
embeddings that enhance the semantic coherence 
of sentence pairs with a specific orientation. 

Guan et al. [84] proposed a methodology for 
leveraging document-aligned similar corpora to 
acquire bilingual embeddings. The absorption of 
two aligned documents made this into a pseudo-
bilingual paper, which was then used to train a 
skip-gram model. Offline methods involve learning 
a projection that facilitates the transformation of 
the source language’s vector space to the target 
language’s vector space. The acquisition of such 
a matrix can be achieved through a supervised 
approach, wherein the objective is to minimize the 
squared Euclidean distance, also known as the Mean 
Squared Error (MSE), between the target word 
embedding of a translated word and the converted 
source word embedding. The matrix can typically 
be acquired by replacing the mean squared error 
with a max-margin hinge loss or by employing 
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singular value decomposition. Bengio et al. [85] 
have introduced an alternative approach for aligning 
word embeddings in target and source languages. 
This method utilizes canonical correlation analysis 
(CCA) to project the embeddings onto a shared 
space. The researchers discovered that incorporating 
cross-lingual embeddings into dependency analysis 
and comprehensive supplementary features such 
as lexical characteristics and word clusters yielded 
significant performance improvements. The authors 
extended their research efforts and incorporated 
nonlinearity into the mapping procedure.

In addition to supervised approaches to 
cross-lingual embedding learning, unsupervised 
methods have also resigned promising outcomes. 
The initial step involved constructing a bilingual 
dictionary using adversarial learning techniques, 
as described by Radford et al. [86]. Subsequently, 
bilingual embeddings were generated, along with a 
modification approach. In another study, Peters et 
al. [44] introduced a similar framework that adopts 
a two-step approach for acquiring multilingual 
embeddings. Notably, this framework considers the 
interdependencies among numerous languages, a 
factor that previous research needs to consider. To 
address the challenges associated with uncertainty 
in acquiring cross-lingual embeddings for reserved 
language sets, Wang et al. [87] introduced a 
resilient framework. This framework enables 
learning a common multilingual embedding space 
by iteratively incorporating additional languages 
into the existing space.

4.2.	 Dynamic	Cross‐lingual	Word	Embeddings

Many researchers have explored and shared their 
findings and studies on dynamic word embeddings 
with cross-lingual transfer, drawing inspiration 
from the significant advancements made in active 
word embeddings for monolingual applications. In 
a study, one of the online approaches examined by 
Akbik et al. [79] focuses on ELMo, a model that 
heavily on which it heavily relies. This approach 
aims to create a polyglot model that captures 
character-level information from multilingual data 
to generate relative representations. Lample and 
Conneau [83] primarily centred on BERT and its 
objectives, explicitly examining the utilization 
of cross-lingual supervision from parallel data 
to investigate cross-lingual language models 
(XMLS). This approach yielded highly favourable 

results on various cross-lingual tasks, establishing 
a new benchmark in the field. Subsequently, the 
researchers demonstrated that large-scale pre-
trained multilingual language models significantly 
improved evaluating cross-lingual transfer tasks. It 
highlights the potential of multilingual modelling, 
excluding compromising the evaluation of 
individual language-specific outcomes.

In contrast, offline methodologies 
have employed linear projection to generate 
contextualized pre-trained embeddings [60]. The 
approach used in our study involved utilizing 
averaged contextualized embeddings as a reference 
point for individual words and acquiring knowledge 
of the shift matrix within the reference space. 
Wang et al. [87] introduced a method for directly 
acquiring this transformation within the given 
context, preserving word sense in cross-lingual 
dynamic embeddings. McCann et al. [47] evaluated 
current methods for dynamic cross-lingual 
embeddings and demonstrated their significant 
potential in enhancing cross-lingual dependency 
parsing. Additionally, they have shown that online 
methodologies exhibit superior encoding of cross-
lingual lexical correspondence compared to offline 
techniques.

4.3. Multilingual Word Embeddings

In addition to the practice of transferring 
embedding models from resource-rich to low-
resource languages through a plan, there have also 
been efforts to train embedding models in multiple 
languages simultaneously. In their study, Bengio et 
al. [85] introduced a novel language model called 
multi-BERT. This model was trained on a collection 
of mono-lingual Wikipedia corpora from a total 
of 104 languages. Notably, the model exhibited 
exceptional performance in zero-shot cross-
lingual model shifts. The researchers demonstrated 
through a diverse set of investigative experiments 
that the multi-BERT model possesses the ability 
to seamlessly transition between languages, even 
in the absence of any explicit lexical cues. It is 
achieved by effectively capturing and understanding 
multilingual contexts.

In addition, Wag et al. [88] investigated the 
multi-BERT model’s generalisation ability. They 
devised an alternative method for transferring 
lexical information from a monolingual model 
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to new languages. The outcome challenges the 
prevailing notion that multi-BERT exhibits strong 
generalization capabilities due to its utilization of 
a shared sub-word vocabulary and simultaneous 
training across multiple languages. In contrast, it 
was suggested that the monolingual representations 
should acquire abstract concepts that can be applied 
to various languages. 

5. EMBEDDING FOR OUT-OF-
VOCABULARY WORDS

The word2vec model is known for its simplicity 
and efficiency in learning semantic representations 
of words from large data files [89]. However, 
it has limitations in learning embeddings for 
OOV texts. OOV words can be categorized into 
terms not in the open vocabulary and words not 
encountered in the current corpus [90]. OOV texts 
can be broadly classified into three forms. (i) The 
dynamic lexicon, precisely online terminology, is 
developing continuously. (ii) Proper names refer 
to specific entities such as geographical locations, 
organizations, individuals, automated expressions, 
and temporal references. (iii) Investigating the 
Terminology of Research Fields and Professional 
Titles. In academic discourse, various terminologies 
encompass elements, such as the titles of literary 
works or newly created artistic pieces, including 
documentaries or novels. In most instances, 
expanding one’s vocabulary is the optimal 
approach. In addition to linguistic processing, there 
is an expansion of vocabulary, enabling us to delve 
into the realm of OOV words, particularly those 
that fall within the extensive range of less favoured 
components. Words that are often unfamiliar are 
typically ignored, removed, or replaced with an 
‘unknown’ tag (UNK), which is an insufficient 
solution. Addressing the challenges posed by OOV 
words is crucial. Recently, various neural network-
based models, such as FastText, MorphoRNN, and 
MWE, have been developed to tackle this issue 
effectively. 

6. DATASETS AND EVALUATION 
FRAMEWORKS

The measurement assessment system for current 
word embeddings can be categorized based on 
intrinsic and extrinsic evaluation. However, these 
evaluation approaches have faced extensive 
criticism in the existing literature. In this fragment, 

we present a brief overview of the two types of 
evaluations discussed in the previous quarter 
and direct readers to recent research studies for a 
thorough explanation and analysis.

6.1. Intrinsic Evaluation

Intrinsic evaluations establish relationships between 
words by assessing their syntactic or semantic 
properties, relying on artificial assessments as a 
basis. Through careful observation of the methods 
employed to acquire these assessments, it is possible 
to categorize such approaches into two distinct 
types: absolute and relative intrinsic evaluation. 
In the initial category, the individual reviews 
are gathered before victimization, serving as a 
reference point for word embedding methodologies. 
In intrinsic evaluation, the comparative approach 
uses accessors to assess word embeddings 
candidly grounded on their performance in an 
exact word relation objective or charge [91]. Due 
to its independence from human involvement or 
interaction, the absolute form of intrinsic evaluation 
is frequently employed alongside comparative 
inherent evaluation. In the following section, we will 
briefly introduce several well-known assessment 
techniques. The method used for assessing semantic 
similarity, known as similarity checking, is widely 
utilized due to its effectiveness in determining the 
relationship between word distances in human 
heuristic judgments and embedding space. The 
test sets commonly employed in current research 
include WordSim-353 [92], Mammals, Entities, 
Natural kinds (MEN) [93], and SimVerb-3500 [94].

The word analogy technique has gained 
significant recognition due to its integration with the 
well-known CBOW and Skip-gram representations. 
In this context, the embeddings of three words, w, 
x, and y, are employed to forecast the word z. The 
objective is to identify z in a manner that maintains 
the exact relationship between w and x as y and z. 
As an illustration, let us consider the scenario where 
w represents Pakistan, b represents Islamabad, and 
c represents India. In this case, d would correspond 
to Delhi. Prominent examples of trial sets of this 
nature include the WordRep, Microsoft Research 
Syntactic Analogies Dataset, and Google Analogy 
[95]. The synonym detection technique assesses 
the capacity of embeddings to accurately identify 
the most similar word to a given word from a pool 
of candidates. When considering a specific goal 
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word, such as “levied,” one must select among 
options such as “imposed” (correct), “believed,” 
“requested,” and “correlated.” The datasets that 
could be utilized in this methodology encompass 
the Test of English as a Foreign Language (TOEFL), 
English as a Second Language (ESL), and Reading 
and Writing for Academic Purposes (RDWP) [96].

The word embedding space in the concept 
categorization technique is evaluated through 
clustering. This task categorizes a set of specific 
terms into distinct subsets. For instance, the 
words “goat” and “dog” will be classified under 
the mammal category, while “oranges” and 
“grapes” will be categorized as fruits [97]. The 
identification of verb-noun pairs in textual data is 
facilitated by utilizing a technique known as the 
Sectional Preference method. Commonly used 
word embeddings can identify verb-noun pairs in 
which the noun is the subject or object of the verb. 
For example, the noun “humanity” is often used as 
the subject instead of the object of the verb “serve.” 
Greenberg, Sayeed and Danberg (GDS) [98], and 
Ulrike and Pado (UP) [99] are commonly employed 
lexical sets.

6.2. Extrinsic Evaluation

Word embeddings are used as feedback for 
downstream tasks and to measure the influence 
of these tasks using specific metrics in extrinsic 
evaluations. Word embeddings have demonstrated 
significant applicability across various functions in 
the NLP domain. These embeddings can be utilized 
for multiple parts, as perceiving all such tasks as 
non-essential assessments is theoretically possible. 
One category of downstream tasks within this field 
encompasses language modelling, named entity 
recognition, POS tagging, chunking, machine 
reading comprehension, sentiment analysis, 
semantic role labelling, dependency parsing, 
machine translation, and natural language inference 
[100]. The assumption inherent in these non-
essential evaluations is that word embeddings that 
yield positive results in one task will also deliver 
positive results in other studies. This assumption 
has been extensively explored and analyzed in the 
existing literature. Empirical observations have 
provided evidence that distinct NLP tasks prefer 
specific embeddings. Therefore, although extrinsic 
evaluations can help compare embeddings about 
a particular mission or objective, they are not 

mentioned as metrics for the overall review of word 
embeddings’ excellence.

7.    CONCLUSIONS 

In this review, we reflect upon the evolution and 
impact of word embeddings within the domain of 
NLP. Word embeddings have formed a crucial basis 
for carrying out manifold tasks in NLP and have 
revolutionized the way text is represented; hence, 
semantic understanding has proficiently been 
achieved. Through such a detailed critical analysis, 
we have showcased their relative strengths and 
limitations while considering a host of various NLP 
tasks, including but not limited to sentiment analyses 
and machine translations. The paper has critically 
discussed the evolution of word embeddings from 
static to contextual, from the traditional Word2Vec 
and GloVe models to more advanced BERT and 
ELMo models.

Such a comparison highlights the advantages 
of contextualized embeddings well, which even 
pushed the limit of word representation further 
by incorporating dynamic context and improving 
performance on downstream tasks. However, just 
like any other machine learning model, embedding 
biases, capturing long-range dependencies, and 
inefficiency with out-of-vocabulary words remain 
critical points of concern that continue to drive 
research and innovation.

We also reviewed some applications of cross-
lingual embedding and why multilingual models 
contribute to more effective language transfer and 
alignment across diverse languages. The emergent 
techniques for handling OOV words, dynamically 
changing embeddings, and domain-specific models 
have opened new vistas for applying NLP, further 
showcasing versatility and scalability.

Overall, word embeddings have given an 
effective way of encoding semantic information 
that furthers NLP. However, much research still 
needs to be carried out regarding critical challenges, 
such as bias, generalization toward poor-resource 
languages, and handling linguistic complexities. 
Ongoing developments of more sophisticated 
models and hybrid approaches are bound to shape 
the future of NLP, enabling highly accurate and 
meaningful language understanding in and out of 
general and specialist contexts. 
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