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Abstract: The present study derives a stable version of “A Modified Algorithm for Reduction of Error in Combined 
Numerical Integration”. It is discovered that the earlier proposed scheme “A Modified Algorithm for Error Reduction 
in Combined Numerical Integration” exhibits accuracy fluctuations when the number of slits, n, is increased (n ≥ 9). 
.  Starting with the number of slits n = 9 and increasing the count of sub-intervals, the error increases spontaneously. 
This spontaneous spike in error is resolved by considering a better combination of quadrature rules. To this, the 
notable result of this study is the identification of an optimal choice for quadrature formulae that could minimizes error 
fluctuations in combined numerical integration regardless the number of slits (n). With this revised choice, the error 
remains relatively stable and predictable even as the count of sub-intervals is increased.

Keywords: Numerical Integration, Weddle’s Rule, Boole’s Rule, Six-Point Rule, Simpson’s 1/3 Rule.

1.	 INTRODUCTION

Quadrature is a mathematical technique that 
involves the computation of definite integrals. It has 
a plethora of applications in areas of engineering, 
finance, physics and beyound. In addition to its 
use in numerical integration, quadrature also has 
applications in the differential equations’ solutions, 
such as in the finding solution to boundary value 
problems numerically. It is also used in Monte 
Carlo simulation, which is a statistical method for 
approximating the value of an integral by sampling 
from a probability distribution. Quadrature methods 
aim to approximate definite integrals with a desired 
accuracy. Throughout the past years, various 
quadrature rules and formulas have been devised to 
enhance the accuracy of this approximation.

Among the earliest quadrature rules is the 
trapezoidal rule, which involves estimating the area 
under a curve by summing the areas of trapezoids. 
Though it is simple, this method isn’t always 
accurate, especially for highly curved functions 
that have jagged peeks and valleys. To remedy this 
limitation, new quadrature rules and formulae were 

created. The Newton-Cotes (NC) formula is one 
of the most commonly used quadrature formulae. 
This formula includes splitting the area under a 
curve into smaller subintervals and then using a 
polynomial to approximate the curve inside each 
subinterval. The obtained approximation is then 
utilised to calculate the integral. The accuracy 
of the NC formula depends on the degree of the 
polynomial and the number of subintervals used.

To approximate definite integrals, quadrature 
formulas are used frequently. Definite integrals 
that cannot be integrated analytically can be 
approximated by quadrature formulas [1]. 
Quadrature methods are an effective way of 
approximating integrals when the integrand’s 
discontinuous behaviour is in a bounded range 
rather than the closed-form [2]. Newton–Cotes 
quadrature formulae are based on equally spaced 
points (abscissas) [3]. In mathematics, numerical 
integration (NI) is among the most basic and 
significant practices. It has a wide range of uses, 
including engineering, mechanics and physics. The 
primary purpose is to have an alternative mechanism 
for estimating given definite integrals within finite 



integration limits. Difficulties in NI can be traced 
back to Greek antiquity. They increased the number 
of sides of an inscribed polygon to calculate the 
area of a circle. With the development of calculus 
in the 17th century, new mathematics evolved, 
contributing to elementary rules in NI. Later, NI 
got more practical with the advent of computers, 
and at the day, we have numerous classical and 
modern algorithms providing speedy and more 
accurate results [4]. Many researchers and experts 
have already conducted substantial research on NI. 
A NI rule was proposed by Amanat [5], which is 
based on commonly used Quadrature methods like 
the Trapezoidal, Simpson’s, and Weddle’s rules. 
Natarajan et al. [6] explored the superconvergence 
of the NC rule for Cauchy principal value integrals 
while Liu et al. [7] compared various NI rules 
for approximating these integrals. A mid-point 
integration rule for nonlinear differential equations 
was proposed by Soomro et al. [8], and Shaikh et 
al. [9] proved the quadrature methods outperform 
polynomial collocation in solving second-kind 
Fredholm integral problems.

Bhatti et al. [10] presented a modified approach 
for error reduction in combined numerical 
integration (CNI) by combining lower-order 
rules for decreased error and enhanced accuracy. 
This method outperforms the original quadrature 
rules by two orders of magnitude. In a particular 
quadrature rule, the number of slits is a parameter 
for obtaining higher accuracy. It is supposed that  
number of slits give a better approximation of the 
integral than  number of slits, where . The algorithm 
modified by Bhatti seems to work fine. However, 
the error in the approximation of the integral does 
not always follow a downward trend. It is observed 
that for  number of slits, the error is sometimes 
higher than for  number of slits, where , and this 
happens periodically. This is what we have tried to 
rectify in the present study.

2.	 METHODOLOGY USED FOR 
QUADRATURE RULES 

2.1 The Newton-Cotes Formulae

The NC formulae represent a set of numerical 
integration techniques widely employed in 
approximating definite integrals of functions. 

These techniques are based on the concept of 
approximating a curve by a series of straight line 
segments These formulae offer a practical approach 
to solving integrals when an analytical solution is 
not easily attainable or simply doesn’t exists. They 
are particularly useful for functions that are difficult 
to integrate analytically.
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2.1 The Newton-Cotes Formulae 
 
The NC formulae represent a set of numerical 
integration techniques widely employed in 
approximating definite integrals of functions. 
These techniques are based on the concept of 
approximating a curve by a series of straight line 
segments These formulae offer a practical approach 
to solving integrals when an analytical solution is 
not easily attainable or simply doesn’t exists. They 
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The family of NC formulae is a simple yet 
effective set of NI algorithms. Divide a function 
𝑓𝑓(𝑥𝑥) across some interval [𝑎𝑎, 𝑏𝑏] into n equal pieces 
so that 𝑓𝑓𝑛𝑛 = 𝑓𝑓(𝑥𝑥𝑛𝑛) and ℎ ≈ 𝑏𝑏−𝑎𝑎

𝑛𝑛 . Then, identify 
polynomials that resemble the listed function and 
integrate them to get an idea of the area under the 
curve. It would be ok to use Lagrange's 
interpolation to pick the ideal polynomials. In this 
manner, the NC formulae or quadrature formulae 
are derived by Beyer [11]. 

 
NC formulas is considered open, or closed if 

the interval used is [𝑥𝑥2, 𝑥𝑥𝑛𝑛−1] or [𝑥𝑥1, 𝑥𝑥𝑛𝑛] respective. 
When the function is specified explicitly rather than 
tabulated against the values of x, the optimal NI 
approach is known as Gaussian quadrature. This 
approach yields more accurate approximations (but 
is substantially more difficult to execute) by 
selecting the intervals to sample the function by 
Hildebrand [12]. 

 
Following are the most commonly used 

formula. The trapezoidal rule refers to the 2-point 
closed NC formula because it approximates the 
integral by placing trapezoid(s) with a base parallel 
to the x-axis and an inclined top (linking the 
endpoints of the interval). Let  𝑥𝑥1 and 𝑥𝑥2 = 𝑥𝑥1 + ℎ 
be the first the other endpoint then the Lagrange 
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interpolating polynomial through the points (𝑥𝑥1, 𝑓𝑓1) 
and (𝑥𝑥2, 𝑓𝑓2) is: 

 

𝑃𝑃2(𝑥𝑥) = 𝑥𝑥 − 𝑥𝑥2
𝑥𝑥1 − 𝑥𝑥2

𝑓𝑓1 + 𝑥𝑥 − 𝑥𝑥1
𝑥𝑥2 − 𝑥𝑥1

𝑓𝑓2

= 𝑥𝑥 − 𝑥𝑥1 − ℎ
−ℎ 𝑓𝑓1 + 𝑥𝑥 − 𝑥𝑥1

ℎ 𝑓𝑓2

= 𝑥𝑥
ℎ (𝑓𝑓2 − 𝑓𝑓1) + (𝑓𝑓1 + 𝑥𝑥1

ℎ 𝑓𝑓1 − 𝑥𝑥1
ℎ 𝑓𝑓2) 

 
Upon integration throughout the interval, which 
corresponds to the area of the trapezoid, the result 
is:  

∫ 𝑓𝑓(𝑥𝑥)
𝑥𝑥2

𝑥𝑥1

𝑑𝑑𝑑𝑑 = ∫ 𝑃𝑃2(𝑥𝑥)
𝑥𝑥1+ℎ

𝑥𝑥1

𝑑𝑑𝑑𝑑

= 1
2ℎ (𝑓𝑓2 − 𝑓𝑓1)[𝑥𝑥2]𝑥𝑥2

𝑥𝑥1

+ (𝑓𝑓1 + 𝑥𝑥1
ℎ 𝑓𝑓1 − 𝑥𝑥1

ℎ 𝑓𝑓2) [𝑥𝑥2]𝑥𝑥2
𝑥𝑥1

= 1
2ℎ (𝑓𝑓2 − 𝑓𝑓1)(𝑥𝑥2 + 𝑥𝑥1)(𝑥𝑥2 − 𝑥𝑥1)

+ (𝑥𝑥2 − 𝑥𝑥1)(𝑓𝑓1 + 𝑥𝑥1
ℎ 𝑓𝑓1 − 𝑥𝑥1

ℎ 𝑓𝑓2

= 1
2 (𝑓𝑓2 − 𝑓𝑓1)(2𝑥𝑥1 + ℎ) + 𝑓𝑓1ℎ

+ 𝑥𝑥1(𝑓𝑓1 − 𝑓𝑓2)
= 𝑥𝑥1(𝑓𝑓2 − 𝑓𝑓1) + 1

2 ℎ(𝑓𝑓2 − 𝑓𝑓1) + ℎ𝑓𝑓1

− 𝑥𝑥1(𝑓𝑓2 − 𝑓𝑓1)
= 1

2 ℎ(𝑓𝑓1 + 𝑓𝑓2)

− 1
12 ℎ3𝑓𝑓′′(𝜁𝜁)          (1) 

 
which is the trapezoidal rule. The final term 

indicates the margin of error, which is limited by 
the fact that 𝑥𝑥1 ≤ 𝜁𝜁 ≤ 𝑥𝑥2 cannot exceed the 
maximum value of 𝑓𝑓′′(ζ) within this range. 

The rule with 3 points is known as the 
Simpson's rule. 
 

∫ 𝑓𝑓(𝑥𝑥)
𝑥𝑥3

𝑥𝑥1

𝑑𝑑𝑑𝑑 = ∫ 𝑃𝑃3(𝑥𝑥)
𝑥𝑥1+2ℎ

𝑥𝑥1

𝑑𝑑𝑑𝑑

= 1
3 ℎ(𝑓𝑓1 + 4𝑓𝑓2 + 𝑓𝑓3)

− 1
90 ℎ5𝑓𝑓(4)(𝜁𝜁)   (2) 

 
The closed rule with 4 points is also a 

Simpson's rule. 
 

∫ 𝑓𝑓(𝑥𝑥)
𝑥𝑥4

𝑥𝑥1

𝑑𝑑𝑑𝑑

= 3
8 ℎ(𝑓𝑓1 + 3𝑓𝑓2 + 3𝑓𝑓3 + 𝑓𝑓4)

− 3
80 ℎ5𝑓𝑓(4)(𝜁𝜁)                                  (3) 

 
The Boole's rule is a closed 5-point rule. 
 

∫ 𝑓𝑓(𝑥𝑥)
𝑥𝑥5

𝑥𝑥1

𝑑𝑑𝑑𝑑 = 2
45 ℎ(7𝑓𝑓1 + 32𝑓𝑓2 + 12𝑓𝑓3 + 32𝑓𝑓4

+ 7𝑓𝑓5) 

− 8
945 ℎ7𝑓𝑓(6)(𝜁𝜁)                               (4) 

 
Higher order rules include the 6-point. 

 

∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑
𝑥𝑥6

𝑥𝑥1

= 5
288 ℎ (19𝑓𝑓1 + 75𝑓𝑓2 + 50𝑓𝑓3 + 50𝑓𝑓4

+75𝑓𝑓5 + 19𝑓𝑓6
)

− 275
12096 ℎ7𝑓𝑓(6)(𝜁𝜁)                     (5) 

 
And the Weddle’s rule 

∫ 𝑓𝑓(𝑥𝑥)
𝑥𝑥7

𝑥𝑥1

𝑑𝑑𝑑𝑑

= ℎ
140 (41𝑓𝑓1 + 216𝑓𝑓2 + 27𝑓𝑓3 + 272𝑓𝑓4

+27𝑓𝑓5 + 216𝑓𝑓6 + 41𝑓𝑓7
)

− 9
1400 ℎ9𝑓𝑓(8)(𝜁𝜁)                          (6) 

 
Generally, the n-point rule can be expressed 

analytically as: 

38	 Bhatti et al



A Stable Version of the Modified Algorithm 

 3  
 

interpolating polynomial through the points (𝑥𝑥1, 𝑓𝑓1) 
and (𝑥𝑥2, 𝑓𝑓2) is: 

 

𝑃𝑃2(𝑥𝑥) = 𝑥𝑥 − 𝑥𝑥2
𝑥𝑥1 − 𝑥𝑥2

𝑓𝑓1 + 𝑥𝑥 − 𝑥𝑥1
𝑥𝑥2 − 𝑥𝑥1

𝑓𝑓2

= 𝑥𝑥 − 𝑥𝑥1 − ℎ
−ℎ 𝑓𝑓1 + 𝑥𝑥 − 𝑥𝑥1

ℎ 𝑓𝑓2

= 𝑥𝑥
ℎ (𝑓𝑓2 − 𝑓𝑓1) + (𝑓𝑓1 + 𝑥𝑥1

ℎ 𝑓𝑓1 − 𝑥𝑥1
ℎ 𝑓𝑓2) 

 
Upon integration throughout the interval, which 
corresponds to the area of the trapezoid, the result 
is:  

∫ 𝑓𝑓(𝑥𝑥)
𝑥𝑥2

𝑥𝑥1

𝑑𝑑𝑑𝑑 = ∫ 𝑃𝑃2(𝑥𝑥)
𝑥𝑥1+ℎ

𝑥𝑥1

𝑑𝑑𝑑𝑑

= 1
2ℎ (𝑓𝑓2 − 𝑓𝑓1)[𝑥𝑥2]𝑥𝑥2

𝑥𝑥1

+ (𝑓𝑓1 + 𝑥𝑥1
ℎ 𝑓𝑓1 − 𝑥𝑥1

ℎ 𝑓𝑓2) [𝑥𝑥2]𝑥𝑥2
𝑥𝑥1

= 1
2ℎ (𝑓𝑓2 − 𝑓𝑓1)(𝑥𝑥2 + 𝑥𝑥1)(𝑥𝑥2 − 𝑥𝑥1)

+ (𝑥𝑥2 − 𝑥𝑥1)(𝑓𝑓1 + 𝑥𝑥1
ℎ 𝑓𝑓1 − 𝑥𝑥1

ℎ 𝑓𝑓2

= 1
2 (𝑓𝑓2 − 𝑓𝑓1)(2𝑥𝑥1 + ℎ) + 𝑓𝑓1ℎ

+ 𝑥𝑥1(𝑓𝑓1 − 𝑓𝑓2)
= 𝑥𝑥1(𝑓𝑓2 − 𝑓𝑓1) + 1

2 ℎ(𝑓𝑓2 − 𝑓𝑓1) + ℎ𝑓𝑓1

− 𝑥𝑥1(𝑓𝑓2 − 𝑓𝑓1)
= 1

2 ℎ(𝑓𝑓1 + 𝑓𝑓2)

− 1
12 ℎ3𝑓𝑓′′(𝜁𝜁)          (1) 

 
which is the trapezoidal rule. The final term 

indicates the margin of error, which is limited by 
the fact that 𝑥𝑥1 ≤ 𝜁𝜁 ≤ 𝑥𝑥2 cannot exceed the 
maximum value of 𝑓𝑓′′(ζ) within this range. 

The rule with 3 points is known as the 
Simpson's rule. 
 

∫ 𝑓𝑓(𝑥𝑥)
𝑥𝑥3

𝑥𝑥1

𝑑𝑑𝑑𝑑 = ∫ 𝑃𝑃3(𝑥𝑥)
𝑥𝑥1+2ℎ

𝑥𝑥1

𝑑𝑑𝑑𝑑

= 1
3 ℎ(𝑓𝑓1 + 4𝑓𝑓2 + 𝑓𝑓3)

− 1
90 ℎ5𝑓𝑓(4)(𝜁𝜁)   (2) 

 
The closed rule with 4 points is also a 

Simpson's rule. 
 

∫ 𝑓𝑓(𝑥𝑥)
𝑥𝑥4

𝑥𝑥1

𝑑𝑑𝑑𝑑

= 3
8 ℎ(𝑓𝑓1 + 3𝑓𝑓2 + 3𝑓𝑓3 + 𝑓𝑓4)

− 3
80 ℎ5𝑓𝑓(4)(𝜁𝜁)                                  (3) 

 
The Boole's rule is a closed 5-point rule. 
 

∫ 𝑓𝑓(𝑥𝑥)
𝑥𝑥5

𝑥𝑥1

𝑑𝑑𝑑𝑑 = 2
45 ℎ(7𝑓𝑓1 + 32𝑓𝑓2 + 12𝑓𝑓3 + 32𝑓𝑓4

+ 7𝑓𝑓5) 

− 8
945 ℎ7𝑓𝑓(6)(𝜁𝜁)                               (4) 

 
Higher order rules include the 6-point. 

 

∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑
𝑥𝑥6

𝑥𝑥1

= 5
288 ℎ (19𝑓𝑓1 + 75𝑓𝑓2 + 50𝑓𝑓3 + 50𝑓𝑓4

+75𝑓𝑓5 + 19𝑓𝑓6
)

− 275
12096 ℎ7𝑓𝑓(6)(𝜁𝜁)                     (5) 

 
And the Weddle’s rule 

∫ 𝑓𝑓(𝑥𝑥)
𝑥𝑥7

𝑥𝑥1

𝑑𝑑𝑑𝑑

= ℎ
140 (41𝑓𝑓1 + 216𝑓𝑓2 + 27𝑓𝑓3 + 272𝑓𝑓4

+27𝑓𝑓5 + 216𝑓𝑓6 + 41𝑓𝑓7
)

− 9
1400 ℎ9𝑓𝑓(8)(𝜁𝜁)                          (6) 

 
Generally, the n-point rule can be expressed 

analytically as: 

A Stable Version of the Modified Algorithm 

 3  
 

interpolating polynomial through the points (𝑥𝑥1, 𝑓𝑓1) 
and (𝑥𝑥2, 𝑓𝑓2) is: 

 

𝑃𝑃2(𝑥𝑥) = 𝑥𝑥 − 𝑥𝑥2
𝑥𝑥1 − 𝑥𝑥2

𝑓𝑓1 + 𝑥𝑥 − 𝑥𝑥1
𝑥𝑥2 − 𝑥𝑥1

𝑓𝑓2

= 𝑥𝑥 − 𝑥𝑥1 − ℎ
−ℎ 𝑓𝑓1 + 𝑥𝑥 − 𝑥𝑥1

ℎ 𝑓𝑓2

= 𝑥𝑥
ℎ (𝑓𝑓2 − 𝑓𝑓1) + (𝑓𝑓1 + 𝑥𝑥1

ℎ 𝑓𝑓1 − 𝑥𝑥1
ℎ 𝑓𝑓2) 

 
Upon integration throughout the interval, which 
corresponds to the area of the trapezoid, the result 
is:  

∫ 𝑓𝑓(𝑥𝑥)
𝑥𝑥2

𝑥𝑥1

𝑑𝑑𝑑𝑑 = ∫ 𝑃𝑃2(𝑥𝑥)
𝑥𝑥1+ℎ

𝑥𝑥1

𝑑𝑑𝑑𝑑

= 1
2ℎ (𝑓𝑓2 − 𝑓𝑓1)[𝑥𝑥2]𝑥𝑥2

𝑥𝑥1

+ (𝑓𝑓1 + 𝑥𝑥1
ℎ 𝑓𝑓1 − 𝑥𝑥1

ℎ 𝑓𝑓2) [𝑥𝑥2]𝑥𝑥2
𝑥𝑥1

= 1
2ℎ (𝑓𝑓2 − 𝑓𝑓1)(𝑥𝑥2 + 𝑥𝑥1)(𝑥𝑥2 − 𝑥𝑥1)

+ (𝑥𝑥2 − 𝑥𝑥1)(𝑓𝑓1 + 𝑥𝑥1
ℎ 𝑓𝑓1 − 𝑥𝑥1

ℎ 𝑓𝑓2

= 1
2 (𝑓𝑓2 − 𝑓𝑓1)(2𝑥𝑥1 + ℎ) + 𝑓𝑓1ℎ

+ 𝑥𝑥1(𝑓𝑓1 − 𝑓𝑓2)
= 𝑥𝑥1(𝑓𝑓2 − 𝑓𝑓1) + 1

2 ℎ(𝑓𝑓2 − 𝑓𝑓1) + ℎ𝑓𝑓1

− 𝑥𝑥1(𝑓𝑓2 − 𝑓𝑓1)
= 1

2 ℎ(𝑓𝑓1 + 𝑓𝑓2)

− 1
12 ℎ3𝑓𝑓′′(𝜁𝜁)          (1) 

 
which is the trapezoidal rule. The final term 

indicates the margin of error, which is limited by 
the fact that 𝑥𝑥1 ≤ 𝜁𝜁 ≤ 𝑥𝑥2 cannot exceed the 
maximum value of 𝑓𝑓′′(ζ) within this range. 

The rule with 3 points is known as the 
Simpson's rule. 
 

∫ 𝑓𝑓(𝑥𝑥)
𝑥𝑥3

𝑥𝑥1

𝑑𝑑𝑑𝑑 = ∫ 𝑃𝑃3(𝑥𝑥)
𝑥𝑥1+2ℎ

𝑥𝑥1

𝑑𝑑𝑑𝑑

= 1
3 ℎ(𝑓𝑓1 + 4𝑓𝑓2 + 𝑓𝑓3)

− 1
90 ℎ5𝑓𝑓(4)(𝜁𝜁)   (2) 

 
The closed rule with 4 points is also a 

Simpson's rule. 
 

∫ 𝑓𝑓(𝑥𝑥)
𝑥𝑥4

𝑥𝑥1

𝑑𝑑𝑑𝑑

= 3
8 ℎ(𝑓𝑓1 + 3𝑓𝑓2 + 3𝑓𝑓3 + 𝑓𝑓4)

− 3
80 ℎ5𝑓𝑓(4)(𝜁𝜁)                                  (3) 

 
The Boole's rule is a closed 5-point rule. 
 

∫ 𝑓𝑓(𝑥𝑥)
𝑥𝑥5

𝑥𝑥1

𝑑𝑑𝑑𝑑 = 2
45 ℎ(7𝑓𝑓1 + 32𝑓𝑓2 + 12𝑓𝑓3 + 32𝑓𝑓4

+ 7𝑓𝑓5) 

− 8
945 ℎ7𝑓𝑓(6)(𝜁𝜁)                               (4) 

 
Higher order rules include the 6-point. 

 

∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑
𝑥𝑥6

𝑥𝑥1

= 5
288 ℎ (19𝑓𝑓1 + 75𝑓𝑓2 + 50𝑓𝑓3 + 50𝑓𝑓4

+75𝑓𝑓5 + 19𝑓𝑓6
)

− 275
12096 ℎ7𝑓𝑓(6)(𝜁𝜁)                     (5) 

 
And the Weddle’s rule 

∫ 𝑓𝑓(𝑥𝑥)
𝑥𝑥7

𝑥𝑥1

𝑑𝑑𝑑𝑑

= ℎ
140 (41𝑓𝑓1 + 216𝑓𝑓2 + 27𝑓𝑓3 + 272𝑓𝑓4

+27𝑓𝑓5 + 216𝑓𝑓6 + 41𝑓𝑓7
)

− 9
1400 ℎ9𝑓𝑓(8)(𝜁𝜁)                          (6) 

 
Generally, the n-point rule can be expressed 

analytically as: 
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interpolating polynomial through the points (𝑥𝑥1, 𝑓𝑓1) 
and (𝑥𝑥2, 𝑓𝑓2) is: 

 

𝑃𝑃2(𝑥𝑥) = 𝑥𝑥 − 𝑥𝑥2
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ℎ 𝑓𝑓1 − 𝑥𝑥1
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corresponds to the area of the trapezoid, the result 
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𝑑𝑑𝑑𝑑 = ∫ 𝑃𝑃2(𝑥𝑥)
𝑥𝑥1+ℎ
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= 𝑥𝑥1(𝑓𝑓2 − 𝑓𝑓1) + 1

2 ℎ(𝑓𝑓2 − 𝑓𝑓1) + ℎ𝑓𝑓1

− 𝑥𝑥1(𝑓𝑓2 − 𝑓𝑓1)
= 1

2 ℎ(𝑓𝑓1 + 𝑓𝑓2)

− 1
12 ℎ3𝑓𝑓′′(𝜁𝜁)          (1) 

 
which is the trapezoidal rule. The final term 

indicates the margin of error, which is limited by 
the fact that 𝑥𝑥1 ≤ 𝜁𝜁 ≤ 𝑥𝑥2 cannot exceed the 
maximum value of 𝑓𝑓′′(ζ) within this range. 

The rule with 3 points is known as the 
Simpson's rule. 
 

∫ 𝑓𝑓(𝑥𝑥)
𝑥𝑥3

𝑥𝑥1

𝑑𝑑𝑑𝑑 = ∫ 𝑃𝑃3(𝑥𝑥)
𝑥𝑥1+2ℎ

𝑥𝑥1

𝑑𝑑𝑑𝑑

= 1
3 ℎ(𝑓𝑓1 + 4𝑓𝑓2 + 𝑓𝑓3)

− 1
90 ℎ5𝑓𝑓(4)(𝜁𝜁)   (2) 

 
The closed rule with 4 points is also a 

Simpson's rule. 
 

∫ 𝑓𝑓(𝑥𝑥)
𝑥𝑥4

𝑥𝑥1

𝑑𝑑𝑑𝑑

= 3
8 ℎ(𝑓𝑓1 + 3𝑓𝑓2 + 3𝑓𝑓3 + 𝑓𝑓4)

− 3
80 ℎ5𝑓𝑓(4)(𝜁𝜁)                                  (3) 

 
The Boole's rule is a closed 5-point rule. 
 

∫ 𝑓𝑓(𝑥𝑥)
𝑥𝑥5

𝑥𝑥1

𝑑𝑑𝑑𝑑 = 2
45 ℎ(7𝑓𝑓1 + 32𝑓𝑓2 + 12𝑓𝑓3 + 32𝑓𝑓4

+ 7𝑓𝑓5) 

− 8
945 ℎ7𝑓𝑓(6)(𝜁𝜁)                               (4) 

 
Higher order rules include the 6-point. 

 

∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑
𝑥𝑥6

𝑥𝑥1

= 5
288 ℎ (19𝑓𝑓1 + 75𝑓𝑓2 + 50𝑓𝑓3 + 50𝑓𝑓4

+75𝑓𝑓5 + 19𝑓𝑓6
)

− 275
12096 ℎ7𝑓𝑓(6)(𝜁𝜁)                     (5) 

 
And the Weddle’s rule 

∫ 𝑓𝑓(𝑥𝑥)
𝑥𝑥7

𝑥𝑥1

𝑑𝑑𝑑𝑑

= ℎ
140 (41𝑓𝑓1 + 216𝑓𝑓2 + 27𝑓𝑓3 + 272𝑓𝑓4

+27𝑓𝑓5 + 216𝑓𝑓6 + 41𝑓𝑓7
)

− 9
1400 ℎ9𝑓𝑓(8)(𝜁𝜁)                          (6) 

 
Generally, the n-point rule can be expressed 

analytically as: 

Bhatti et al 

 

 

∫ 𝑓𝑓(𝑥𝑥)
𝑥𝑥𝑛𝑛

𝑥𝑥1

𝑑𝑑𝑑𝑑

= ℎ ∑ 𝐻𝐻𝑛𝑛,𝑖𝑖𝑓𝑓𝑖𝑖 
𝑛𝑛

𝑖𝑖=1
                                      (7) 

 
Where, 

𝐻𝐻𝑛𝑛,𝑟𝑟+1 =
(−1)𝑛𝑛−𝑟𝑟

𝑟𝑟! (𝑛𝑛 − 𝑟𝑟)! ∫ 𝑡𝑡(𝑡𝑡 − 1) … (𝑡𝑡 − 𝑟𝑟 + 1)(𝑡𝑡
𝑛𝑛

0
− 𝑟𝑟 − 1) … (𝑡𝑡
− 𝑛𝑛) 𝑑𝑑𝑑𝑑                           (8) 

 
Note that, 
 

∑ 𝐻𝐻𝑛𝑛,𝑟𝑟+1

𝑛𝑛

𝑟𝑟=0
= 𝑛𝑛                                                           (9) 

 
2.2 Single and Multiple Integration Rules 
 
By dividing intervals into smaller parts and 
applying the technique to each segment, we can 
enhance the accuracy of the mentioned rules. 
These resulting equations are referred to as 
multiple or composite rules, Burden et al. [13]. 

The observed order of accuracy for the quadrature 
formulas is: Simpson’s 𝟑𝟑

𝟖𝟖 formula > Simpson’s 𝟏𝟏
𝟑𝟑 

formula > Boole’s formula > Trapezoidal formula 
> Weddle’s formula by Amjad et al. [14]. 

 
2.3 Modified Algorithm for Combined 

Quadrature 
 
The scheme by Amanat [5] uses the following 
method Trapezoidal, Simpsons 𝟑𝟑/𝟖𝟖, Boole’s and 
Weddle’s rule interchangeably. The number of 
sub-intervals in the methods is suggested to be 
greater than or equal to 9. Out of the total number 
of subintervals, the first 6 subintervals are to be 
approximated using the Weddle’s rule, then the 
Boole’s rule is to be used to approximated as much 
intervals as possible, then the priority is for 
Simpson’s 𝟑𝟑/𝟖𝟖 rule and lastly for any single 
leftover subinterval we can use the trapezoidal 
rule. 

Starting with the number of sub-intervals 𝒏𝒏 =
𝟗𝟗 and increasing the count of sub-intervals, the 
method works fine for 𝒏𝒏 = 𝟗𝟗 and 𝟏𝟏𝟏𝟏, but as we 
reach 𝒏𝒏 = 𝟏𝟏𝟏𝟏, the error increases spontaneously. 
The method regains its momentum at 𝒏𝒏 = 𝟏𝟏𝟏𝟏, 𝟏𝟏𝟏𝟏 
and 𝟏𝟏𝟏𝟏, but again a spontaneous increase in error 
occurs at 𝒏𝒏 = 𝟏𝟏𝟏𝟏. See Table 1. 

  Table 1. Error fashion in the algorithm proposed by Bhatti et al. [10] over different number of subintervals 
Number of subintervals Description of Hybrid Error 

9 6W + 3S Descends 
10 6W + 4B Descends 
11 6W + 4B + 1T Spontaneous rise 
12 6W + 4B + 2T Rises 
13 6W + 4B + 3S Descends 
14 6W + 8B Descends 
15 6W + 8B + 1T Spontaneous rise 
16 6W + 8B + 2T Increase 
17 6W + 8B + 3S Descends 
18 6W + 12B Descends 
19 6W + 12B + 1T Spontaneous rise 
20 6W + 12B + 2T Rises 
21 6W + 12B + 3S Descends 
⋮ ⋮ ⋮ 
T refers to trapezoidal rule, S to Simpsons 1/3, B to Boole’s and W to Weddle’s rule 
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∫ 𝑓𝑓(𝑥𝑥)
𝑥𝑥𝑛𝑛

𝑥𝑥1

𝑑𝑑𝑑𝑑

= ℎ ∑ 𝐻𝐻𝑛𝑛,𝑖𝑖𝑓𝑓𝑖𝑖 
𝑛𝑛

𝑖𝑖=1
                                      (7) 

 
Where, 

𝐻𝐻𝑛𝑛,𝑟𝑟+1 =
(−1)𝑛𝑛−𝑟𝑟

𝑟𝑟! (𝑛𝑛 − 𝑟𝑟)! ∫ 𝑡𝑡(𝑡𝑡 − 1) … (𝑡𝑡 − 𝑟𝑟 + 1)(𝑡𝑡
𝑛𝑛

0
− 𝑟𝑟 − 1) … (𝑡𝑡
− 𝑛𝑛) 𝑑𝑑𝑑𝑑                           (8) 

 
Note that, 
 

∑ 𝐻𝐻𝑛𝑛,𝑟𝑟+1

𝑛𝑛

𝑟𝑟=0
= 𝑛𝑛                                                           (9) 

 
2.2 Single and Multiple Integration Rules 
 
By dividing intervals into smaller parts and 
applying the technique to each segment, we can 
enhance the accuracy of the mentioned rules. 
These resulting equations are referred to as 
multiple or composite rules, Burden et al. [13]. 

The observed order of accuracy for the quadrature 
formulas is: Simpson’s 𝟑𝟑

𝟖𝟖 formula > Simpson’s 𝟏𝟏
𝟑𝟑 

formula > Boole’s formula > Trapezoidal formula 
> Weddle’s formula by Amjad et al. [14]. 

 
2.3 Modified Algorithm for Combined 

Quadrature 
 
The scheme by Amanat [5] uses the following 
method Trapezoidal, Simpsons 𝟑𝟑/𝟖𝟖, Boole’s and 
Weddle’s rule interchangeably. The number of 
sub-intervals in the methods is suggested to be 
greater than or equal to 9. Out of the total number 
of subintervals, the first 6 subintervals are to be 
approximated using the Weddle’s rule, then the 
Boole’s rule is to be used to approximated as much 
intervals as possible, then the priority is for 
Simpson’s 𝟑𝟑/𝟖𝟖 rule and lastly for any single 
leftover subinterval we can use the trapezoidal 
rule. 

Starting with the number of sub-intervals 𝒏𝒏 =
𝟗𝟗 and increasing the count of sub-intervals, the 
method works fine for 𝒏𝒏 = 𝟗𝟗 and 𝟏𝟏𝟏𝟏, but as we 
reach 𝒏𝒏 = 𝟏𝟏𝟏𝟏, the error increases spontaneously. 
The method regains its momentum at 𝒏𝒏 = 𝟏𝟏𝟏𝟏, 𝟏𝟏𝟏𝟏 
and 𝟏𝟏𝟏𝟏, but again a spontaneous increase in error 
occurs at 𝒏𝒏 = 𝟏𝟏𝟏𝟏. See Table 1. 

  Table 1. Error fashion in the algorithm proposed by Bhatti et al. [10] over different number of subintervals 
Number of subintervals Description of Hybrid Error 

9 6W + 3S Descends 
10 6W + 4B Descends 
11 6W + 4B + 1T Spontaneous rise 
12 6W + 4B + 2T Rises 
13 6W + 4B + 3S Descends 
14 6W + 8B Descends 
15 6W + 8B + 1T Spontaneous rise 
16 6W + 8B + 2T Increase 
17 6W + 8B + 3S Descends 
18 6W + 12B Descends 
19 6W + 12B + 1T Spontaneous rise 
20 6W + 12B + 2T Rises 
21 6W + 12B + 3S Descends 
⋮ ⋮ ⋮ 
T refers to trapezoidal rule, S to Simpsons 1/3, B to Boole’s and W to Weddle’s rule 
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∫ 𝑓𝑓(𝑥𝑥)
𝑥𝑥𝑛𝑛

𝑥𝑥1

𝑑𝑑𝑑𝑑

= ℎ ∑ 𝐻𝐻𝑛𝑛,𝑖𝑖𝑓𝑓𝑖𝑖 
𝑛𝑛

𝑖𝑖=1
                                      (7) 

 
Where, 

𝐻𝐻𝑛𝑛,𝑟𝑟+1 =
(−1)𝑛𝑛−𝑟𝑟

𝑟𝑟! (𝑛𝑛 − 𝑟𝑟)! ∫ 𝑡𝑡(𝑡𝑡 − 1) … (𝑡𝑡 − 𝑟𝑟 + 1)(𝑡𝑡
𝑛𝑛

0
− 𝑟𝑟 − 1) … (𝑡𝑡
− 𝑛𝑛) 𝑑𝑑𝑑𝑑                           (8) 

 
Note that, 
 

∑ 𝐻𝐻𝑛𝑛,𝑟𝑟+1

𝑛𝑛

𝑟𝑟=0
= 𝑛𝑛                                                           (9) 

 
2.2 Single and Multiple Integration Rules 
 
By dividing intervals into smaller parts and 
applying the technique to each segment, we can 
enhance the accuracy of the mentioned rules. 
These resulting equations are referred to as 
multiple or composite rules, Burden et al. [13]. 

The observed order of accuracy for the quadrature 
formulas is: Simpson’s 𝟑𝟑

𝟖𝟖 formula > Simpson’s 𝟏𝟏
𝟑𝟑 

formula > Boole’s formula > Trapezoidal formula 
> Weddle’s formula by Amjad et al. [14]. 

 
2.3 Modified Algorithm for Combined 

Quadrature 
 
The scheme by Amanat [5] uses the following 
method Trapezoidal, Simpsons 𝟑𝟑/𝟖𝟖, Boole’s and 
Weddle’s rule interchangeably. The number of 
sub-intervals in the methods is suggested to be 
greater than or equal to 9. Out of the total number 
of subintervals, the first 6 subintervals are to be 
approximated using the Weddle’s rule, then the 
Boole’s rule is to be used to approximated as much 
intervals as possible, then the priority is for 
Simpson’s 𝟑𝟑/𝟖𝟖 rule and lastly for any single 
leftover subinterval we can use the trapezoidal 
rule. 

Starting with the number of sub-intervals 𝒏𝒏 =
𝟗𝟗 and increasing the count of sub-intervals, the 
method works fine for 𝒏𝒏 = 𝟗𝟗 and 𝟏𝟏𝟏𝟏, but as we 
reach 𝒏𝒏 = 𝟏𝟏𝟏𝟏, the error increases spontaneously. 
The method regains its momentum at 𝒏𝒏 = 𝟏𝟏𝟏𝟏, 𝟏𝟏𝟏𝟏 
and 𝟏𝟏𝟏𝟏, but again a spontaneous increase in error 
occurs at 𝒏𝒏 = 𝟏𝟏𝟏𝟏. See Table 1. 

  Table 1. Error fashion in the algorithm proposed by Bhatti et al. [10] over different number of subintervals 
Number of subintervals Description of Hybrid Error 

9 6W + 3S Descends 
10 6W + 4B Descends 
11 6W + 4B + 1T Spontaneous rise 
12 6W + 4B + 2T Rises 
13 6W + 4B + 3S Descends 
14 6W + 8B Descends 
15 6W + 8B + 1T Spontaneous rise 
16 6W + 8B + 2T Increase 
17 6W + 8B + 3S Descends 
18 6W + 12B Descends 
19 6W + 12B + 1T Spontaneous rise 
20 6W + 12B + 2T Rises 
21 6W + 12B + 3S Descends 
⋮ ⋮ ⋮ 
T refers to trapezoidal rule, S to Simpsons 1/3, B to Boole’s and W to Weddle’s rule 
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This describes that the error starts to raise only 
where the trapezoidal rule comes into picture. This 
could be resolved if consider any better option 
instead of trapezoidal rule and redefine the 
distribution of sub-intervals for the hybrid.  

 
 
2.4 A Stable Version of the Modified Algorithm 

for Combined Numerical Integration 

The “Modified Algorithm for Error Reduction in 
Combined Numerical Integration” (SMA) exhibits 
accuracy fluctuations when the domain number of 
sub-intervals, 𝒏𝒏, is increased (𝒏𝒏 ≥ 𝟗𝟗).  Starting 
with the number of sub-intervals 𝒏𝒏 = 𝟗𝟗 and 
increasing the count of sub-intervals, the method 
works fine for 𝒏𝒏 = 𝟗𝟗 and 𝟏𝟏𝟏𝟏, but the error increases 
spontaneously at 𝒏𝒏 = 𝟏𝟏𝟏𝟏. The algorithm regains 
momentum for 𝒏𝒏 = 𝟏𝟏𝟏𝟏, 𝟏𝟏𝟏𝟏 and 𝟏𝟏𝟏𝟏, but a 
spontaneous increase in error occurs at 𝒏𝒏 = 𝟏𝟏𝟏𝟏. 
This fashion describes that the error starts to raise 
only where the trapezoidal rule comes into 
combination (due to its poor order of accuracy). 
This could be resolved if consider a better option 
instead of the trapezoidal rule and redefine the 
distribution of sub-intervals for the algorithm. To 
overcome the fore-highlighted issue the choice of 
rules for approximating rules is revised as follows. 

It is meaningful to give priority to rules that 
comes with the highest order of accuracy, Thus, the 
priority is to be given to the Weddle’s rule first, then 
comes the Six-point rule and lastly, the Simpson’s 
rule. Interestingly, this makes the algorithm more 

robust, as it can now handle 𝐧𝐧 ≥ 𝟒𝟒 of sub-intervals. 

2.4.1 The Revised Algorithm 
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left to be integrated. 

• If 𝐫𝐫𝐫𝐫𝐫𝐫(𝒏𝒏, 𝟔𝟔) = 𝟓𝟓, we use the Six-
Point rule to approximate the 5-leftover 
sub-intervals. 
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distribution of sub-intervals for the hybrid.  
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This fashion describes that the error starts to raise 
only where the trapezoidal rule comes into 
combination (due to its poor order of accuracy). 
This could be resolved if consider a better option 
instead of the trapezoidal rule and redefine the 
distribution of sub-intervals for the algorithm. To 
overcome the fore-highlighted issue the choice of 
rules for approximating rules is revised as follows. 

It is meaningful to give priority to rules that 
comes with the highest order of accuracy, Thus, the 
priority is to be given to the Weddle’s rule first, then 
comes the Six-point rule and lastly, the Simpson’s 
rule. Interestingly, this makes the algorithm more 
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distribution of sub-intervals for the algorithm. To 
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rules for approximating rules is revised as follows. 
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rule. Interestingly, this makes the algorithm more 

robust, as it can now handle 𝐧𝐧 ≥ 𝟒𝟒 of sub-intervals. 
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• If 𝐫𝐫𝐫𝐫𝐫𝐫(𝒏𝒏, 𝟔𝟔) = 𝟓𝟓, we use the Six-
Point rule to approximate the 5-leftover 
sub-intervals. 
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 𝒏𝒏 = 𝟗𝟗 𝒏𝒏 = 𝟏𝟏𝟏𝟏 𝒏𝒏 = 𝟏𝟏𝟏𝟏 
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approximate the 4-leftover sun-
intervals. 

• If 𝐫𝐫𝐫𝐫𝐫𝐫(𝒏𝒏, 𝟔𝟔) = 𝟑𝟑, we reserve 6 sub-
interval and approximate the rest 𝒏𝒏 −
𝟔𝟔 sub-intervals with Weddle’s rule. 
This too gives 𝒓𝒓𝒓𝒓𝒓𝒓(𝒏𝒏 − 𝟔𝟔, 𝟔𝟔) = 𝟑𝟑, 
but now with the 6 reserved sub-
intervals, we have a total of 9 sub-
intervals. These 9 sub-intervals can be 
sorted as 𝟓𝟓 + 𝟒𝟒 and used with the Six-
Point and composite Simpson’s 𝟏𝟏

𝟑𝟑  
respectively. 

• If 𝐫𝐫𝐫𝐫𝐫𝐫(𝒏𝒏, 𝟔𝟔) = 𝟏𝟏, we again reserve 6 
sub-interval. This gives 𝐫𝐫𝐫𝐫𝐫𝐫(𝒏𝒏 −
𝟔𝟔, 𝟔𝟔) = 𝟏𝟏, and with the 6 reserved sub-
intervals, we have a total of 7 sub-
intervals. These 7 sub-intervals can be 
sorted as 𝟓𝟓 + 𝟐𝟐 and used with the Six-
Point and Simpson’s 𝟏𝟏𝟑𝟑  respectively. 

iii. Finally, Sum up the segmented integral 
approximation to get approximate value of 
given definite integral. 

 
Table 3. Numerical results from example 2 - EM, PMA and MA in comparison to SMA 

 𝒏𝒏 = 𝟗𝟗 𝒏𝒏 = 𝟏𝟏𝟏𝟏 𝒏𝒏 = 𝟏𝟏𝟏𝟏 
EM 2.394714891 2.394609023 2.394530692 
Abs. Error 5.5721e-4 4.5134e-4 3.7301e-4 
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tested against those obtained through existing 
methods (EM), like Simpson's 1/3rd or Simpson's 
3/8th, depending on the number of segments. 
Furthermore, we compare the results from the SMA 
with the previously available algorithm (PMA) by 
Amanat [5] and the refined version of the modified 
algorithm (MA) as proposed by Bhatti et al. [10]. 

To evaluate the integrals in the examples, 
numerical tests have been undertaken. These 
computations are carried out using MATLAB® 
R2018b, where the codes are written and executed. 
The outcomes of the these tests are presented in 
Tables 2, 3, and 4, depicting the results achieved in 
figure 1, 2 and 3. Through the computation of both 
absolute and percentage errors, a comparison of the 
results is established. Across all instances, the 
proposed SMA approach consistently showcases its 
robust stability when places against with EM, 
PMA, and MA methods. 

Example 1.  
∫ √𝟏𝟏 − 𝒙𝒙𝟐𝟐𝟏𝟏
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representations of Tables 2, 3, and 4. On the graphs, 

the 𝒚𝒚-axis displays the percentile error when the 
given integral is computed by EM, PMA, MA, and 
SMA; while the 𝒙𝒙-axis displays the number of 
subintervals. Compared to other methods, the 
proposed approach SMA is observed to have better 
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Fig. 1. Results from example 1 
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version of the rule proposed by Bhatti et al. [10], 
incorporating a better the selection of quadrature 
rule combinations. The research reveals that as the 
number of subintervals increases, the SMA exhibits 
significantly greater stability in comparison to 
the existing composite rules by Amanat [5] and 

A Stable Version of the Modified Algorithm 

 7  
 

Abs. Error 2.6505e-5 4.680e-7 5.9293e-4 
Per. Error 3.0851e-3 % 5.4470e-5 % 6.9014e-2 % 
SMA 0.859150653 0.859147358 0.859148341 

Abs. Error 9.739e-6 6.4440e-6 7.4270e-6 
Per. Error 1.1335e-3 % 7.5005e-4 % 8.6446e-4 % 

 

3.   RESULTS AND DISCUSSION 

We have acquired the approximate solutions for 
three aforementioned examples employing the 
proposed SMA. The computed outcomes are then 
tested against those obtained through existing 
methods (EM), like Simpson's 1/3rd or Simpson's 
3/8th, depending on the number of segments. 
Furthermore, we compare the results from the SMA 
with the previously available algorithm (PMA) by 
Amanat [5] and the refined version of the modified 
algorithm (MA) as proposed by Bhatti et al. [10]. 

To evaluate the integrals in the examples, 
numerical tests have been undertaken. These 
computations are carried out using MATLAB® 
R2018b, where the codes are written and executed. 
The outcomes of the these tests are presented in 
Tables 2, 3, and 4, depicting the results achieved in 
figure 1, 2 and 3. Through the computation of both 
absolute and percentage errors, a comparison of the 
results is established. Across all instances, the 
proposed SMA approach consistently showcases its 
robust stability when places against with EM, 
PMA, and MA methods. 

Example 1.  
∫ √𝟏𝟏 − 𝒙𝒙𝟐𝟐𝟏𝟏
𝟎𝟎 𝐝𝐝𝒙𝒙, see Table 2 and Figure 1. 

Example 2. 
∫ 𝒙𝒙√𝟏𝟏 + 𝒙𝒙𝟐𝟐
𝟏𝟏 𝐝𝐝𝒙𝒙, see Table 3 and Figure 2. 

Example 3. 
∫ 𝒙𝒙𝒆𝒆𝒙𝒙𝟐𝟐𝟏𝟏
𝟎𝟎 𝐝𝐝𝒙𝒙, see Table 4 and Figure 3. 

Figures 1, 2, and 3 illustrate graphical 
representations of Tables 2, 3, and 4. On the graphs, 

the 𝒚𝒚-axis displays the percentile error when the 
given integral is computed by EM, PMA, MA, and 
SMA; while the 𝒙𝒙-axis displays the number of 
subintervals. Compared to other methods, the 
proposed approach SMA is observed to have better 
performance. 

Fig. 1. Results from example 1 
 

Fig. 2. Results from example 2 

	 A Stable Version of the Modified Algorithm	 41



Table 2. Numerical results from example 1 - EM, PMA and MA in comparison to SMA
 n = 9 n = 10 n = 11

EM 0.774546345 0.776129582 0.777362076
Abs. Error 1.0851e-2 9.2685e-3 8.0360e-3
Per. Error 1.3816 % 1.1801 % 1.0231 %
PMA 0.776456493 0.781754678 0.778798642
Abs. Error 8.9416e-3 3.6434e-3 6.5995e-3
Per. Error 1.1384 % 0.4639 % 0.8402 %
MA 0.780204267 0.782199413 0.778824026
Abs. Error 5.1938e-3 3.1987e-3 6.5741e-3
Per. Error 0.6613 % 0.4072 % 0.8370 %
SMA 0.781128346 0.781754818 0.782341531
Abs. Error 4.2698e-3 3.6433e-3 3.0566e-3
Per. Error 0.5436 % 0.4638 % 0.3891 %

Table 3. Numerical results from example 2 - EM, PMA and MA in comparison to SMA
 n = 9 n = 10 n = 11

EM 2.394714891 2.394609023 2.394530692
Abs. Error 5.5721e-4 4.5134e-4 3.7301e-4
Per. Error 2.3273e-2 % 1.8852e-2 % 1.5580e-2 %
PMA 2.394213311 2.39415769 2.394188088
Abs. Error 5.5635e-5 1.4999e-8 3.0412e-5
Per. Error 2.3238e-3 % 6.3e-7 % 1.2703e-3 %
MA 2.394157718 2.394157674 2.39418808 
Abs. Error 4.3000e-8 1.0000e-9 3.0404e-5
Per. Error 1.7960e-6 % 4.0000e-8 % 1.2699e-3 %
SMA 2.394157703 2.394157690 2.394157675
Abs. Error 2.7960e-08 1.5331e-08 1.2720e-10
Per. Error 1.1670e-6 % 6.4000e-8 % 5.3000e-9 %

Table 4. Numerical results from example 3 - EM, PMA and MA in comparison to SMA
 n = 9 n = 10 n = 11

EM 0.862664226 0.862179431 0.861788193
Abs. Error 3.5233e-3 3.0385e-3 2.6473e-3
Per. Error 4.1009e-1 % 3.5367e-1 % 3.0813e-1 %
PMA 0.860034834 0.859147486 0.859737179
Abs. Error 8.9392e-4 6.5720e-6 5.9627e-4
Per. Error 1.0405e-1 % 7.6495e-4 % 6.9402e-2 %
MA 0.859167420 0.859141382 0.859733843 
Abs. Error 2.6505e-5 4.680e-7 5.9293e-4
Per. Error 3.0851e-3 % 5.4470e-5 % 6.9014e-2 %
SMA 0.859150653 0.859147358 0.859148341
Abs. Error 9.739e-6 6.4440e-6 7.4270e-6
Per. Error 1.1335e-3 % 7.5005e-4 % 8.6446e-4 %
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3/8th, depending on the number of segments. 
Furthermore, we compare the results from the SMA 
with the previously available algorithm (PMA) by 
Amanat [5] and the refined version of the modified 
algorithm (MA) as proposed by Bhatti et al. [10]. 

To evaluate the integrals in the examples, 
numerical tests have been undertaken. These 
computations are carried out using MATLAB® 
R2018b, where the codes are written and executed. 
The outcomes of the these tests are presented in 
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Fig. 3. Results from example 3 
 

 

4.   CONCLUSION  

The introduced SMA method is an improved 
version of the rule proposed by Bhatti et al. [10], 
incorporating a better the selection of quadrature 
rule combinations. The research reveals that as the 
number of subintervals increases, the SMA exhibits 
significantly greater stability in comparison to the 
existing composite rules by Amanat [5] and Bhatti 
et al. [10]. The findings demonstrate that the 
accuracy fluctuations encountered in previous 
methods are effectively mitigated through the 
redefined integration rule choices and their 
combined integration pattern implemented in SMA. 
This approach emerges as a preferable alternative 
to the previously employed rules, addressing 
accuracy concerns with enhanced stability. 
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