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Abstract: This article’s main goal is to investigate the concept of multi-polar fuzzy sets (MPF-sets) in LA-semi-
groups, which is an extension of bi-polar fuzzy sets (BPF-sets) in LA-semigroups. The main objective of this research 
is to extend certain significant BPF-set results to MPF-sets results. This article introduces the concepts of multi-polar 
fuzzy sub LA-semigroups, multi-polar fuzzy quasi-ideals, multi-polar fuzzy bi-ideals, multi-polar fuzzy generalized 
bi-ideals, and multi-polar fuzzy interior ideals in LA-semigroups. This article also discusses a number of fundamental 
aspects of multi-polar fuzzy ideals, and we use these aspects to define regular LA-semigroups.
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1. INTRODUCTION

Over the course of the field’s evolution, various 
types of fuzzy set expansions have been developed. 
The theory of fuzzy sets is well known and has 
a large variety of applications in many different 
fields, including decision-making issues, neural 
networks, artificial intelligence, social sciences, and 
many more. The use of innovative ideas related to 
m-polar spherical fuzzy sets for medical diagnosis 
is investigated by Riaz et al. [16]. In the field of 
multi-criteria decision-making, researchers have 
recently introduced hybrid structures of MPF-sets 
to better model uncertainties. The idea of F-set was 
first represented by Zadeh [13-14]. The structure 
of fuzzy group is defined by Rosenfeld [12]. 
Mordeson et al. [8] and Kuroki [4] have examined 
fuzzy semigroups. The application of BPF-sets 
in decision making is examined by Malik et al. 
[7]. The membership function only ranged over 
the closed interval [0,1], it is hard to demonstrate 
the distinctness of irrelevant elements with the 
contradictory elements in a F-set. On the basis 
of these observations, the notion of BPF-set was 
introduced by Lee [5]. The BPF-set is actually an 
expansion of a F-set whose membership degree lies 
within the range [-1,1]. In a BPF-set, the associate 
degree 0 denotes that an element is unrelated to 
the correlative property, the associate degree from 
[0,1] denotes that the element partially fulfills the 
property to a bit extent, and the associate degree 
from [-1,0] denotes that the element completely 
fulfills the contrary property to a bit extent [5-6].

A 2-polar -sets and BPF-sets are two algebraic 
structures. Actually, BPF-set and 2-polar F-set have 
a natural one-to-one relationship. The BPF-sets can 
be expanded to MPF-sets by utilizing the concept 
of a one-to-one relationship. Sometimes, different 
things have occasionally been observed in various 
ways. This prompted research into MPF-set. The 
idea behind this interpretation is predicated on the 
fact that the given collection contains multi-polar 
information. MPF-sets have been successful in 
assigning membership degrees to multiple objects 
in the context of multi-polar information. In this 
case, it is important to note that MPF-sets only 
provide positive degrees of membership for each 
element, and no negative membership degrees are 
assumed [1]. Numerous real-world issues involving 
multiple factors, multiple indices, multiple items, 
and multiple polarities can be solved using multi-
polar F-sets. Multi-polar F-sets can be used for 
diagnostic data, cooperative games, and decision-
making.

A MPF-set can be written as m distinct F-sets, 
just like the BPF-sets can. As a consequence, every 
input is expressed by an m-dimensional vector 
whose entries belongs to [0,1], each represents a 
degree of confidence. Assume that the collection 
of context is N = {1,2,3,...,m}. Then, MPF-set 
will indicate the fulfillment degree of an element 
with regard to nth context for each n ∈ N [2]. For 
example, the F-set “brilliant” can have different 
interpretations among students in a particular class.
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We will give an example to demonstrate it. 

Let Z = {z₁, z₂, z₃, z₄, z₅} be the collection of 5 
students. We shall grade them by a 4-polar F-set 
based on the following four qualities given below 
in Table 1. 

Table 1. 4 polar fuzzy set 

 IQ Sports Punctual Discipline 

z1 1 0 0.8 0.9 

z2 1 0.8 0.5 0.5 

z3 0.5 1 1 0.8 

z4 0.8 0.5 1 0.8 

z5 1 0.5 0.9 0.8 

Consequently, we get a 4-polar F-subset 𝑔̂𝑔 : Z → 
[0,1]⁴ of Z such that 

               𝑔̂𝑔(z₁) = (1, 0, 0.8, 0.9) 

               𝑔̂𝑔(z₂) = (1, 0.8, 0.5, 0.5) 

               𝑔̂𝑔(z₃) = (0.5, 1, 1, 0.8) 

               𝑔̂𝑔(z₄) = (0.8, 0.5, 1, 0.8) 

               𝑔̂𝑔(z₅) = (1, 0.5, 0.9, 0.8). 

Here 1 stands for positive comments, 0.5 for 
average, and 0 for negative remarks. 

In current paper, we define multi-polar fuzzy 
sub LA-semigroup (MPF-sub LA-semigroup) 
and multi-polar fuzzy ideals (MPF-ideals) of an 
LA-semigroup. Besides this, the characterization 
of regular LA-semigroups by MPF-ideals are 
presented. 

2. PRELIMINARIES 

We now illustrate some basic definitions and 
initial results centred on LA-semigroups that are 
significant in and of themselves. For the parts that 
follow, these are necessary. In the present paper, 
𝑆̂𝑆 will be denoting an LA-semigroup, unless 
stated otherwise. The concept of LA-semigroups, 
was first studied by Kazim and Naseerudin in 
1972 [3]. Later on, Yusuf and Mushtaq worked 
on locally associative LA-semigroups in 1979 
[10]. 

Definition 2.1  If an algebraic structure (𝑆̂𝑆,•) 
holds the equation (r•s)•t = (t•s)•r for each r, s, t 

∈ 𝑆̂𝑆, then it is a left almost semigroup (or LA-
semigroup) [3]. 

Some basic definitions which are widely used in 
LA-semigroup as described below. 

If for each a ∈ 𝑆̂𝑆, ea = a, then e in 𝑆̂𝑆 is a left 
identity. The left identity e ∈ 𝑆̂𝑆 is unique [9]. 
Furthermore, if e ∈ 𝑆̂𝑆, then 𝑆̂𝑆 = 𝑆̂𝑆e = e𝑆̂𝑆 and 𝑆̂𝑆² = 
𝑆̂𝑆. A left ideal (L-ideal) over 𝑆̂𝑆 is a subset 𝐼𝐼 that 
satisfies 𝑆̂𝑆𝐼𝐼 ⊆ 𝐼𝐼 and right ideal (R-ideal) over 𝑆̂𝑆 if 
𝐼𝐼𝑆̂𝑆 ⊆ 𝐼𝐼. 𝐼𝐼 is simply termed an ideal (or two-sided) 
over 𝑆̂𝑆 if 𝐼𝐼 is a L-ideal and R-ideal over 𝑆̂𝑆 [11]. A 
subset 𝐼𝐼 over 𝑆̂𝑆 which is non-empty is a sub LA-
semigroup over 𝑆̂𝑆 if 𝐼𝐼² ⊆ 𝐼𝐼. A subset 𝐼𝐼 over 𝑆̂𝑆 
which is non-empty is a generalized bi-ideal (GB-
ideal) over 𝑆̂𝑆 if (𝐼𝐼𝑆̂𝑆)𝐼𝐼 ⊆ 𝐼𝐼. A sub LA-semigroup 𝐼𝐼 
over 𝑆̂𝑆 is a bi-ideal (B-ideal) over 𝑆̂𝑆 if (𝐼𝐼𝑆̂𝑆)𝐼𝐼 ⊆ 𝐼𝐼. 
A subset 𝐼𝐼 over 𝑆̂𝑆 which is non-empty is a quasi-
ideal (Q-ideal) over 𝑆̂𝑆 if 𝐼𝐼𝑆̂𝑆 ∩ 𝑆̂𝑆𝐼𝐼 ⊆ 𝐼𝐼. A sub LA-
semigroup 𝐼𝐼 over 𝑆̂𝑆 is an interior ideal (I-ideal) 
over 𝑆̂𝑆 if (𝑆̂𝑆𝐼𝐼) 𝑆̂𝑆 ⊆ Î. 

Definition 2.2 A function 𝑔̂𝑔 : 𝑆̂𝑆 → [0,1] from 𝑆̂𝑆 
into the interval [0,1] is a fuzzy subset (F-subset) 
of a universe 𝑆̂𝑆. 

Some important definitions in F-sets are defined 
below.   

Let 𝑔̂𝑔 be a F-subset over 𝑆̂𝑆. Then the set 𝑔̂𝑔t = {s ∈ 
𝑆̂𝑆 | 𝑔̂𝑔(s) ≥ t} for all t ∈ (0,1], is named as a level 
subset over 𝑆̂𝑆. 

Let 𝑔̂𝑔 and ℎ̂ be any two F-subsets over 𝑆̂𝑆, then 𝑔̂𝑔 
≤ ℎ̂ means that 𝑔̂𝑔(s) ≤ ℎ̂(s) for each s ∈ 𝑆̂𝑆. The F-
subsets 𝑔̂𝑔 ∧ ℎ̂ and 𝑔̂𝑔 ∨ ℎ̂ of 𝑆̂𝑆 is described as 

(𝑔̂𝑔 ∧ ℎ̂)(s) = 𝑔̂𝑔(s) ∧ ℎ̂(s) and  

(𝑔̂𝑔 ∨ ℎ̂)(s) = 𝑔̂𝑔(s) ∨ ℎ̂(s) for all s ∈ 𝑆̂𝑆. 

The product 𝑔̂𝑔 ∘ℎ̂ is defined as 
(𝑔̂𝑔∘ℎ̂)(s) =  

 {
 

⋁𝑠𝑠=𝑝𝑝𝑝𝑝{𝑔̂𝑔(p) ∧ ℎ̂(q)}, if ∃ p, q ∈ 𝑆̂𝑆 such that 𝑠𝑠 = 𝑝𝑝𝑝𝑝
0                                              𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 

for all s ∈ 𝑆̂𝑆. 

A F-subset 𝑔̂𝑔 over 𝑆̂𝑆 is a fuzzy sub LA-semigroup 
(F-Sub LA-semigroup) over 𝑆̂𝑆 if for every p, q ∈ 
𝑆̂𝑆, 𝑔̂𝑔(pq) ≥ 𝑔̂𝑔(p) ∧ 𝑔̂𝑔(q) [15]. 
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For every p, q ∈ 𝑆̂𝑆, a F-subset 𝑔̂𝑔 over 𝑆̂𝑆 is 
classified as a fuzzy left ideal (FL-ideal) over 𝑆̂𝑆 if 
𝑔̂𝑔(pq) ≥ 𝑔̂𝑔(q) [15]. 

For every p, q ∈ 𝑆̂𝑆, a F-subset 𝑔̂𝑔 over 𝑆̂𝑆 is 
classified as a fuzzy right ideal (FR-ideal) over 𝑆̂𝑆 
if 𝑔̂𝑔(pq) ≥ 𝑔̂𝑔(p) [15]. 

If F-subset 𝑔̂𝑔  is both a FL-ideal and a FR-ideal 
over 𝑆̂𝑆, so it is a fuzzy ideal (F-ideal) over 𝑆̂𝑆. 

A F-subset 𝑔̂𝑔 over 𝑆̂𝑆 is a fuzzy quasi-ideal (FQ-
ideal) over 𝑆̂𝑆 if (𝑔̂𝑔 ∘ δ) ∧ (δ ∘ 𝑔̂𝑔) ≤ 𝑔̂𝑔. Here, δ is 
the F-subset over 𝑆̂𝑆 which maps each element of 
𝑆̂𝑆 on 1, that is δ is the characteristic function over 
Ŝ [15]. 

A F-subset 𝑔̂𝑔 over 𝑆̂𝑆 is a fuzzy generalized bi-
ideal (FGB-ideal) over 𝑆̂𝑆 if 𝑔̂𝑔((pq)r) ≥ 𝑔̂𝑔(p) ∧ 𝑔̂𝑔(r) 
for each p, q, r ∈ 𝑆̂𝑆 [15]. 

A F-Sub LA-semigroup 𝑔̂𝑔 over 𝑆̂𝑆 is known as a 
fuzzy bi-ideal (FB-ideal) over 𝑆̂𝑆 if 𝑔̂𝑔((pq)r) ≥ 𝑔̂𝑔(p) 
∧ 𝑔̂𝑔(r) for each p, q , r ∈ 𝑆̂𝑆 [15]. 
 
A F-Sub LA-semigroup 𝑔̂𝑔 over 𝑆̂𝑆 is a fuzzy 
interior-ideal (FI-ideal) over 𝑆̂𝑆 if for all p, q, r ∈ 
𝑆̂𝑆, 𝑔̂𝑔((pq)r) ≥ 𝑔̂𝑔(q) [15]. 

3. RESULTS AND DISCUSSION 

Now, we define some notions and present our 
main results regarding multi-polar fuzzy ideals in 
𝑆̂𝑆. 

Definition 3.1 [1] Multi-polar fuzzy subset over 
𝑆̂𝑆 is a mapping 𝑔̂𝑔 : 𝑆̂𝑆 → [0,1]m. 

MPF-set is represented by the m-tuple 𝑔̂𝑔 = 
(𝑔̂𝑔₁,𝑔̂𝑔₂,...,𝑔̂𝑔m), consists of mappings 𝑔̂𝑔n : 𝑆̂𝑆→[0,1] 
for each n ∈ {1,2,3,...,m}. The collection of all 
MPF-subsets of 𝑆̂𝑆, is represented as m(𝑆̂𝑆). We 
define a relation ≤ on m(𝑆̂𝑆) in the following 
manner: 

For any two MPF-subsets 𝑔̂𝑔 = (𝑔̂𝑔₁,𝑔̂𝑔₂,...,𝑔̂𝑔m) and ℎ̂ 
= (ℎ̂₁,ℎ̂₂,...,ℎ̂m) of an LA-semigroup 𝑆̂𝑆, 𝑔̂𝑔 ≤ ℎ̂ 
means that 𝑔̂𝑔n(s) ≤ ℎ̂n(s) for each s ∈ 𝑆̂𝑆 and n ∈ 
{1,2,3,...,m}. 

The symbols 𝑔̂𝑔 ∧ ℎ̂ and 𝑔̂𝑔 ∨ ℎ̂ denotes the 
following MPF-subsets over 𝑆̂𝑆. 

(𝑔̂𝑔 ∧ ℎ̂)(s) = 𝑔̂𝑔(s) ∧ ℎ̂(s) and (𝑔̂𝑔 ∨ ℎ̂)(s) = 𝑔̂𝑔(s) ∨ 
ℎ̂(s) that is (𝑔̂𝑔n ∧ ℎ̂n)(s) = 𝑔̂𝑔n(s) ∧ ℎ̂n(s) and (𝑔̂𝑔n ∨ 

ℎ̂n)(s) = 𝑔̂𝑔n(s) ∨ ℎ̂n(s) for each s ∈ 𝑆̂𝑆 and n ∈ 
{1,2,3,...,m}. 

Let 𝑔̂𝑔 = (𝑔̂𝑔₁,𝑔̂𝑔₂,...,𝑔̂𝑔m) and ℎ̂ = (ℎ̂₁,ℎ̂₂,...,ℎ̂m) be any 
two MPF-subsets over 𝑆̂𝑆. 

The product 𝑔̂𝑔 ∘ ℎ̂ = (𝑔̂𝑔₁ ∘ ℎ̂₁, 𝑔̂𝑔₂ ∘ ℎ̂₂,..,𝑔̂𝑔n ∘ ℎ̂n) is 
defined as  

(𝑔̂𝑔n ∘ ℎ̂n) = 

{ ⋁𝑠𝑠=𝑝𝑝𝑝𝑝{𝑔̂𝑔𝑛𝑛(p) ∧ ℎ̂𝑛𝑛(q)}, if s = pq for some p, q ∈  𝑆̂𝑆
0                                       𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 

for every n ∈ {1,2,3,...,m}. 

For m = 3, the following example illustrates the 
product of MPF-subsets 𝑔̂𝑔 and ℎ̂ over 𝑆̂𝑆. 
Example 3.1 Let the LA-semigroup 𝑆̂𝑆 = {u, v, w} 
with the binary operation "∙" is defined as (Table 
2): 

Table 2. LA-semigroup 

We define 3-polar fuzzy subsets 𝑔̂𝑔 = (𝑔̂𝑔₁,𝑔̂𝑔₂,𝑔̂𝑔₃) 
and ℎ̂ = (ℎ̂₁,ℎ̂₂,ℎ̂₃) of 𝑆̂𝑆 as follows: 

𝑔̂𝑔(u) = (0.1,0.2,0.1), 𝑔̂𝑔(v) = (0,0,0),  𝑔̂𝑔(w) = 
(0.2,0.3,0.4) 

and 

 ℎ̂(u) = (0,0,0), ℎ̂(v) = (0,0.1,0.2), ℎ̂(w) = 
(0.3,0,0.4). 

By definition, 

(𝑔̂𝑔₁ ∘ ℎ̂ ₁)(u) = 0.2, (𝑔̂𝑔₁ ∘ ℎ̂ ₁)(v) = 0, (𝑔̂𝑔₁ ∘ ℎ̂ ₁)(w) 
= 0 

 (𝑔̂𝑔₂ ∘ ℎ̂₂)(u) = 0.1, (𝑔̂𝑔₂ ∘ ℎ̂₂)(v) = 0.1, (𝑔̂𝑔₂ ∘ ℎ̂₂)(w) 
= 0 

 (𝑔̂𝑔₃ ∘ ℎ̂₃)(u) = 0.4, (𝑔̂𝑔₃ ∘ ℎ̂₃)(v) = 0.2, (𝑔̂𝑔₃ ∘ ℎ̂₃)(w) 
= 0 

So, the product of 𝑔̂𝑔 = (𝑔̂𝑔₁,𝑔̂𝑔₂,𝑔̂𝑔₃) and ℎ̂  = 
(ℎ̂₁,ℎ̂₂,ℎ̂₃) is defined by 

(𝑔̂𝑔 ∘ ℎ̂)(u) = (0.2,0.1,0.4), 

• U v W 

U U u U 

V U u U 

w V v U 
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(𝑔̂𝑔 ∘ ℎ̂)(v) = (0,0.1,0.2) 

(𝑔̂𝑔 ∘ ℎ̂)(w) = (0,0,0). 

Definition 3.2 Consider 𝑔̂𝑔 = (𝑔̂𝑔₁,𝑔̂𝑔₂,...,𝑔̂𝑔m) be a 
MPF-subset over 𝑆̂𝑆. 

(1) Let 𝑔̂𝑔t = {x ∈ Ŝ | 𝑔̂𝑔(x) ≥ t} be defined for each 
t and t = (t₁,t₂,...,tm) ∈ (0,1]m, such that 𝑔̂𝑔n(x) ≥ tn 
for each n ∈ {1,2,3,...,m}. We name 𝑔̂𝑔t a t-cut or 
sometimes a level set. This means 𝑔̂𝑔t = 
⋂ (𝑔̂𝑔𝑛𝑛)𝑡𝑡𝑛𝑛

𝑚𝑚
𝑘𝑘=1 . 

Definition 3.3 A multi-polar fuzzy subset 𝑔̂𝑔 = 
(𝑔̂𝑔₁,𝑔̂𝑔₂,...,𝑔̂𝑔m) over 𝑆̂𝑆 is a multi-polar fuzzy sub 
LA-semigroup (MPF-sub LA-semigroup) over 𝑆̂𝑆 
if 𝑔̂𝑔(xy) ≥ min{𝑔̂𝑔(x), 𝑔̂𝑔(y)} for every x,y ∈ 𝑆̂𝑆, that 
is 𝑔̂𝑔n(xy) ≥ min{𝑔̂𝑔n(x), 𝑔̂𝑔n(y)} for each n ∈ 
{1,2,3,...,m}. 

Definition 3.4 A multi-polar fuzzy subset 𝑔̂𝑔 = 
(𝑔̂𝑔₁,𝑔̂𝑔₂,...,𝑔̂𝑔m) over 𝑆̂𝑆 is a multi-polar fuzzy left 
ideal (MPFL-ideal) over 𝑆̂𝑆 if for each x, y ∈ 𝑆̂𝑆, 
𝑔̂𝑔(xy) ≥ 𝑔̂𝑔(y), that is 𝑔̂𝑔n (xy) ≥ 𝑔̂𝑔n(y) and multi-
polar fuzzy right ideal (MPFR-ideal) over 𝑆̂𝑆 if for 
each x, y ∈ 𝑆̂𝑆, 𝑔̂𝑔(xy) ≥ 𝑔̂𝑔(x), that is 𝑔̂𝑔n(xy) ≥ 𝑔̂𝑔n(x) 
for each n ∈ {1,2,3,...,m}. 

A MPF-subset 𝑔̂𝑔 over 𝑆̂𝑆 is considered a MPF-
ideal over 𝑆̂𝑆  if it satisfies the conditions of being 
a multi-polar fuzzy left ideal (MPFL-ideal) and a 
multi-polar fuzzy right ideal (MPFR-ideal) over 
𝑆̂𝑆.  

The next example is of 3-polar fuzzy two-sided 
ideal over 𝑆̂𝑆. 

Example 3.2 Consider 𝑆̂𝑆 = {r,s,t,u,v} be an LA-
semigroup under the binary operation"∙" defined 
below in Table 3. 

Table 3. LA-semigroup 

• R s t u v 
R R r r r r 
S R s s s s 
T R s u v t 
U R s t u v 
V R s v t u 

 

We define a 3-polar fuzzy subset 𝑔̂𝑔 = (𝑔̂𝑔₁,𝑔̂𝑔₂,𝑔̂𝑔₃) 
of 𝑆̂𝑆 as follows: 

𝑔̂𝑔(r) = (0.8,0.8,0.7), 𝑔̂𝑔(s) = (0.7,0.6, 0.5), 

𝑔̂𝑔(t) = (0.6,0.4, 0.2), 𝑔̂𝑔(u) = (0.6, 0.4,0.2) and 

𝑔̂𝑔(v) = (0.6, 0.4, 0.2). 

Clearly, 𝑔̂𝑔 = (𝑔̂𝑔₁,𝑔̂𝑔₂,𝑔̂𝑔₃) is both a 3-polar FL-ideal 
and a 3-polar FR-ideal over 𝑆̂𝑆. Hence 𝑔̂𝑔 is a 3-
polar fuzzy two-sided ideal over 𝑆̂𝑆. 

Definition 3.5 Let φ ≠ 𝐴̂𝐴 ⊆ 𝑆̂𝑆, where 𝑆̂𝑆 be an LA-
semigroup. Subsequently, the multi-polar 
characteristic function 

𝐶̂𝐶𝐴̂𝐴 : X →[0,1]m of 𝐴̂𝐴 is described as  

𝐶̂𝐶𝐴̂𝐴(x) = { (1,1, . . . ,1) m − tuple for x ∈  Â
(0,0, . . . ,0) m − tuple for x ∉  Â 

Lemma 3.1 For any two subsets 𝐴̂𝐴 ≠  φ and 𝐵̂𝐵 ≠  
φ of an LA-semigroup 𝑆̂𝑆. The subsequent 
equalities are hold. 

    (1) 𝐶̂𝐶𝐴̂𝐴 ∧ 𝐶̂𝐶𝐵̂𝐵 = 𝐶̂𝐶Â∩𝐵̂𝐵. 

    (2) 𝐶̂𝐶𝐴̂𝐴 ∨ 𝐶̂𝐶𝐵̂𝐵 = 𝐶̂𝐶Â∪𝐵̂𝐵 

    (3) 𝐶̂𝐶𝐴̂𝐴 ∘ 𝐶̂𝐶𝐵̂𝐵 = 𝐶̂𝐶Â𝐵̂𝐵  

Proof. (1) Let 𝐴̂𝐴 ≠  φ and 𝐵̂𝐵 ≠  φ be two subsets 
over 𝑆̂𝑆. We examine the four cases as below, 

Case 1: Consider x ∈ Â ∩ B̂. Then, 𝐶̂𝐶Â∩𝐵̂𝐵(x) = 
(1,1,...,1). Also x ∈ Â ∩ B̂ implies x ∈ Â and x ∈ 
𝐵̂𝐵. Hence, 𝐶̂𝐶𝐴̂𝐴(x) = (1,1,...,1) and 𝐶̂𝐶𝐵̂𝐵(x) = 
(1,1,...,1). This implies that (𝐶̂𝐶𝐴̂𝐴∧𝐶̂𝐶𝐵̂𝐵)(x) = 
𝐶̂𝐶𝐴̂𝐴(x)∧𝐶̂𝐶𝐵̂𝐵(x) = (1,1,...,1). Thus, 𝐶̂𝐶𝐴̂𝐴∧𝐶̂𝐶𝐵̂𝐵 = 𝐶̂𝐶Â∩𝐵̂𝐵. 

Case 2: Consider x ∉ Â ∩ B̂. Then 𝐶̂𝐶Â∩𝐵̂𝐵(x) = 
(0,0,...,0). As x ∉ Â ∩ 𝐵̂𝐵 thus x ∉ Â or x ∉ 𝐵̂𝐵. As 
a result, it follows that 𝐶̂𝐶Â(x) = (0,0,...,0) or 𝐶̂𝐶𝐵̂𝐵(x) 
= (0,0,...,0). Thus, (𝐶̂𝐶𝐴̂𝐴 ∧ 𝐶̂𝐶𝐵̂𝐵)(x) = 𝐶̂𝐶𝐴̂𝐴(x) ∧ 𝐶̂𝐶𝐵̂𝐵(x) 
= (0,0,...,0). Therefore 𝐶̂𝐶𝐴̂𝐴 ∧ 𝐶̂𝐶𝐵̂𝐵 = 𝐶̂𝐶Â∩B̂. 

(2) Consider 𝐴̂𝐴 and 𝐵̂𝐵 denote non-empty subsets 
of 𝑆̂𝑆. 

Case 1: Let x ∈ Â ∪ 𝐵̂𝐵. Then, 𝐶̂𝐶Â∪𝐵̂𝐵(x) = (1,1,...,1). 
Since x ∈ Â ∪ 𝐵̂𝐵 implies x ∈ Â or x ∈ 𝐵̂𝐵. Hence, 
𝐶̂𝐶𝐴̂𝐴(x) = (1,1,...,1) or 𝐶̂𝐶𝐵̂𝐵 (x) = (1,1,...,1). As a 
result, it follows that (𝐶̂𝐶𝐴̂𝐴 ∨ 𝐶̂𝐶𝐵̂𝐵)(x) = 𝐶̂𝐶𝐴̂𝐴(x) ∨ 
𝐶̂𝐶𝐵̂𝐵(x) = (1,1,...,1). Thus, 𝐶̂𝐶𝐴̂𝐴 ∨ 𝐶̂𝐶𝐵̂𝐵 = 𝐶̂𝐶Â∪𝐵̂𝐵. 

Case 2: Let x ∉ Â ∪ 𝐵̂𝐵. Then 𝐶̂𝐶Â∪𝐵̂𝐵(x) = (0,0,...,0). 
Since x ∉ Â ∪ 𝐵̂𝐵, we get x ∉ Â and x ∉ B. This 
implies that 𝐶̂𝐶𝐴̂𝐴(x) = (0,0,...,0) and 𝐶̂𝐶𝐵̂𝐵(x) = 
(0,0,...,0). Thus, (𝐶̂𝐶𝐴̂𝐴 ∨ 𝐶̂𝐶𝐵̂𝐵)(x) = 𝐶̂𝐶𝐴̂𝐴(x) ∨ 𝐶̂𝐶𝐵̂𝐵(x) = 
(0,0,...,0). Hence 𝐶̂𝐶𝐴̂𝐴 ∨ 𝐶̂𝐶𝐵̂𝐵 = 𝐶̂𝐶Â∪𝐵̂𝐵. 

(3) Let 𝐴̂𝐴 ≠  φ and 𝐵̂𝐵 ≠  φ be subsets over 𝑆̂𝑆. 

58	 Pervaiz et al



Case 1: Let x ∈ 𝐴̂𝐴𝐵̂𝐵, which implies that x = ab for 
a ∈ 𝐴̂𝐴 and b ∈ 𝐵̂𝐵. Thus 𝐶̂𝐶Â𝐵̂𝐵(x) = (1,1,...,1). Since 
a ∈ 𝐴̂𝐴 and b ∈ 𝐵̂𝐵, we have 𝐶̂𝐶𝐴̂𝐴(a) = (1,1,...,1) and 
𝐶̂𝐶𝐵̂𝐵(b) = (1,1,...,1). Now, 

(𝐶̂𝐶𝐴̂𝐴∘𝐶̂𝐶𝐵̂𝐵)(x) = ⋁𝑥𝑥=𝑢𝑢𝑢𝑢{𝐶̂𝐶𝐴̂𝐴(u)∧𝐶̂𝐶𝐵̂𝐵(v)} 

        ≥ 𝐶̂𝐶𝐴̂𝐴(a)∧𝐶̂𝐶𝐵̂𝐵(b) 

        = (1,1,...,1) 

Thus, 𝐶̂𝐶𝐴̂𝐴 ∘ 𝐶̂𝐶𝐵̂𝐵 = 𝐶̂𝐶Â𝐵̂𝐵. 

Case 2: Let x ∉ 𝐴̂𝐴𝐵̂𝐵. This implies that 𝐶̂𝐶Â𝐵̂𝐵(x) = 
(0,0,...,0). Because x ≠ ab for each a ∈ 𝐴̂𝐴 and b ∈ 
𝐵̂𝐵. So, (𝐶̂𝐶𝐴̂𝐴∘𝐶̂𝐶𝐵̂𝐵)(x)= ⋁𝑥𝑥=𝑎𝑎𝑎𝑎{𝐶̂𝐶𝐴̂𝐴(a)∧𝐶̂𝐶𝐵̂𝐵(b)} = 
(0,0,...,0). 

Hence 𝐶̂𝐶𝐴̂𝐴 ∘ 𝐶̂𝐶𝐵̂𝐵 = 𝐶̂𝐶Â𝐵̂𝐵. 

Lemma 3.2  Consider 𝐿̂𝐿 ≠  φ be a subset of 𝑆̂𝑆. So 
the subsequent assertions hold. 

(1) 𝐿̂𝐿  is a sub LA-semigroup over 𝑆̂𝑆 iff 𝐶̂𝐶𝐿̂𝐿 is a  
multi-polar fuzzy sub LA-semigroup over 𝑆̂𝑆. 

(2) 𝐿̂𝐿  is a left (right, two-sided) ideal over 𝑆̂𝑆 iff 
𝐶̂𝐶𝐿̂𝐿 is a multi-polar fuzzy left (right, two-sided) 
ideal over 𝑆̂𝑆. 

Proof. (1) Consider 𝐿̂𝐿 is a sub LA-semigroup over 
𝑆̂𝑆. We claim that 

𝐶̂𝐶𝐿̂𝐿(xy) ≥ 𝐶̂𝐶𝐿̂𝐿(x) ∧ 𝐶̂𝐶𝐿̂𝐿(y) for every x, y ∈ 𝑆̂𝑆. We 
examine the four cases as below, 

Case 1 : Let x, y ∈ 𝐿̂𝐿. So, 𝐶̂𝐶𝐿̂𝐿(x) = 𝐶̂𝐶𝐿̂𝐿(y) = 
(1,1,...,1). Since 𝐿̂𝐿 is a sub LA-semigroup over 𝑆̂𝑆, 
so xy ∈ 𝐿̂𝐿 it follows that 𝐶̂𝐶𝐿̂𝐿(xy) = (1,1,...,1). 
Hence 𝐶̂𝐶𝐿̂𝐿(xy) ≥ 𝐶̂𝐶𝐿̂𝐿(x) ∧ 𝐶̂𝐶𝐿̂𝐿(y). 

Case 2 : Consider x ∈ 𝐿̂𝐿, y ∉ 𝐿̂𝐿. Then, 𝐶̂𝐶𝐿̂𝐿(x) = 
(1,1,...,1) and 𝐶̂𝐶𝐿̂𝐿(y) = (0,0,...,0). So, 𝐶̂𝐶𝐿̂𝐿x) ∧ 𝐶̂𝐶𝐿̂𝐿(y) 
= (0,0,...,0). But 𝐶̂𝐶𝐿̂𝐿(xy) ≥ (0,0,...,0). Thus 𝐶̂𝐶𝐿̂𝐿(xy) 
≥ 𝐶̂𝐶𝐿̂𝐿(x) ∧𝐶̂𝐶𝐿̂𝐿(y). 

Case 3 : Consider x, y ∉ 𝐿̂𝐿. Then, 𝐶̂𝐶𝐿̂𝐿(x) = 𝐶̂𝐶𝐿̂𝐿(y) = 
(0,0,...,0). Clearly, 𝐶̂𝐶𝐿̂𝐿(xy) ≥ (0,0,...,0) = 𝐶̂𝐶𝐿̂𝐿(x) ∧ 
𝐶̂𝐶𝐿̂𝐿(y). 

Case 4 : Consider x ∉ 𝐿̂𝐿, y ∈ 𝐿̂𝐿. Then, 𝐶̂𝐶𝐿̂𝐿(x) = 
(0,0,...,0) and 𝐶̂𝐶𝐿̂𝐿(y) = (1,1,...,1). Clearly, 𝐶̂𝐶𝐿̂𝐿(xy) 
≥ (0,0,...,0) = 𝐶̂𝐶𝐿̂𝐿(x) ∧ 𝐶̂𝐶𝐿̂𝐿(y). 

Conversely, let 𝐶̂𝐶𝐿̂𝐿 is a MPF-sub LA-semigroup 
over 𝑆̂𝑆 and x, y ∈ 𝐿̂𝐿. Then, 𝐶̂𝐶𝐿̂𝐿(x) = 𝐶̂𝐶𝐿̂𝐿y) = 
(1,1,...,1). By definition, 𝐶̂𝐶𝐿̂𝐿(xy) ≥ 𝐶̂𝐶𝐿̂𝐿(x) ∧𝐶̂𝐶𝐿̂𝐿(y) = 

(1,1,...,1) ∧ (1,1,...,1) = (1,1,...,1), we have 𝐶̂𝐶𝐿̂𝐿(xy) 
= (1,1,...,1). This implies that xy ∈ 𝐿̂𝐿, that is 𝐿̂𝐿 is 
a sub LA-semigroup over 𝑆̂𝑆. 

(2) Suppose that 𝐿̂𝐿 is a L-ideal over 𝑆̂𝑆. We show 
that 𝐶̂𝐶𝐿̂𝐿(xy) ≥ 𝐶̂𝐶𝐿̂𝐿(y) for every x,y ∈ 𝑆̂𝑆. We 
examine the two cases as below, 

Case 1 : Consider y ∈ 𝐿̂𝐿 and x ∈ 𝑆̂𝑆. Then, 𝐶̂𝐶𝐿̂𝐿(y) = 
(1,1,...,1). As 𝐿̂𝐿 is a L-ideal over 𝑆̂𝑆, so xy ∈ 𝐿̂𝐿 
implies that 𝐶̂𝐶𝐿̂𝐿(xy) = (1,1,...,1). Hence 𝐶̂𝐶𝐿̂𝐿(xy) ≥ 
𝐶̂𝐶𝐿̂𝐿(y). 

Case 2 : Let y ∉ 𝐿̂𝐿 and x ∈ 𝑆̂𝑆. Then, 𝐶̂𝐶𝐿̂𝐿(y) = 
(0,0,...,0). Clearly, 𝐶̂𝐶𝐿̂𝐿(xy) ≥ 𝐶̂𝐶𝐿̂𝐿(y). 

Conversely, let 𝐶̂𝐶𝐿̂𝐿 is a MPFL-ideal over 𝑆̂𝑆. 
Consider that x ∈ 𝑆̂𝑆 and y ∈ 𝐿̂𝐿. Thus, 𝐶̂𝐶𝐿̂𝐿(y) = 
(1,1,...,1). By definition, 𝐶̂𝐶𝐿̂𝐿(xy) ≥ 𝐶̂𝐶𝐿̂𝐿(y) = 
(1,1,...,1), we get 

𝐶̂𝐶𝐿̂𝐿(xy) = (1,1,...,1). So xy ∈ 𝐿̂𝐿, as a result 𝐿̂𝐿 is a L-
ideal over 𝑆̂𝑆. 

Likewise, we can demonstrate that 𝐿̂𝐿 is a R-ideal 
over 𝑆̂𝑆 iff 𝐶̂𝐶𝐿̂𝐿 is a MPFR-ideal over 𝑆̂𝑆. Thus 𝐿̂𝐿 is a 
two-sided ideal over 𝑆̂𝑆 iff 𝐶̂𝐶𝐿̂𝐿 is a multi-polar 
fuzzy two-sided ideal over 𝑆̂𝑆. 

Lemma 3.3 Consider 𝑔̂𝑔 = (𝑔̂𝑔₁,𝑔̂𝑔₂,...,𝑔̂𝑔m) be a 
MPF-subset over 𝑆̂𝑆. Then the subsequent 
assertions hold. 

(1) 𝑔̂𝑔 is a MPF-sub LA-semigroup over 𝑆̂𝑆 iff 

      𝑔̂𝑔 ∘ 𝑔̂𝑔 ≤ 𝑔̂𝑔. 

(2) 𝑔̂𝑔 is a MPFL-ideal over 𝑆̂𝑆 iff 

      δ ∘ 𝑔̂𝑔 ≤ 𝑔̂𝑔. 

    (3) 𝑔̂𝑔 is a MPFR-ideal over 𝑆̂𝑆 iff 

         𝑔̂𝑔 ∘ δ ≤ 𝑔̂𝑔. 

    (4) 𝑔̂𝑔 is a multi-polar fuzzy two sided over 𝑆̂𝑆 

          iff δ ∘ 𝑔̂𝑔 ≤ 𝑔̂𝑔 and 𝑔̂𝑔 ∘ δ ≤ 𝑔̂𝑔. 

Here, δ represents the MPF-subset over 𝑆̂𝑆 that 
maps every element of  𝑆̂𝑆 to (1,1,...,1). 

Proof. (1) Consider that 𝑔̂𝑔 = (𝑔̂𝑔₁,𝑔̂𝑔₂,...,𝑔̂𝑔m) be a 
MPF-sub LA-semigroup over 𝑆̂𝑆, i.e. 𝑔̂𝑔n(xy) ≥ 
𝑔̂𝑔n(x) ∧ 𝑔̂𝑔n(y) for all n ∈{1,2,3,...,m}. Let a ∈ 𝑆̂𝑆. If 
a ≠ bc for any b, c ∈ 𝑆̂𝑆, so that (𝑔̂𝑔 ∘ 𝑔̂𝑔)(a) = 0. 
Hence, (𝑔̂𝑔 ∘ 𝑔̂𝑔 (a) ≤ 𝑔̂𝑔(a). But if a = xy for x,y ∈ 𝑆̂𝑆, 
then 

	 Some Studies of Multi-Polar Fuzzy Ideals in LA-Semigroups 	 59



Some Studies of Multi-Polar Fuzzy Ideals in LA-Semigroups 

 

(𝑔̂𝑔n ∘ 𝑔̂𝑔n)(a) = ⋁𝑎𝑎=𝑥𝑥𝑥𝑥{𝑔̂𝑔n(x) ∧ 𝑔̂𝑔n(y)} 

      ≤ ⋁𝑎𝑎=𝑥𝑥𝑥𝑥{𝑔̂𝑔n(xy)} 

      = 𝑔̂𝑔n(a) for every n ∈ {1,2,3,...,m}. 

Therefore 𝑔̂𝑔 ∘ 𝑔̂𝑔 ≤ 𝑔̂𝑔. 

Conversely, assume that (𝑔̂𝑔 ∘ 𝑔̂𝑔) ≤ 𝑔̂𝑔 and x,y ∈ 𝑆̂𝑆. 
Then 

𝑔̂𝑔n(xy) ≥ (𝑔̂𝑔n ∘ 𝑔̂𝑔n)(xy) 

           = ⋁𝑥𝑥𝑥𝑥=𝑢𝑢𝑢𝑢{𝑔̂𝑔n(u) ∧ 𝑔̂𝑔n(v)} 

           ≥ 𝑔̂𝑔n(x) ∧ 𝑔̂𝑔n(y) for each n ∈ {1,2,3,...,m}. 

Hence 𝑔̂𝑔(xy) ≥ 𝑔̂𝑔(x) ∧ 𝑔̂𝑔(y). Thus 𝑔̂𝑔 is a MPF-sub 
LA-semigroup over 𝑆̂𝑆. 

(2) Let 𝑔̂𝑔 = (𝑔̂𝑔₁,𝑔̂𝑔₂,...,𝑔̂𝑔m) be a MPFL-ideal over 
𝑆̂𝑆, i.e. 𝑔̂𝑔n(xy) ≥ 𝑔̂𝑔n(y) for every x,y ∈ 𝑆̂𝑆 and n ∈ 
{1,2,3,...,m}. Consider a ∈ 𝑆̂𝑆 . If a ≠ bc for b,c ∈ 
𝑆̂𝑆, therefore 

(δ∘𝑔̂𝑔)(a) = 0. Hence, δ∘𝑔̂𝑔 ≤ 𝑔̂𝑔. But if a = xy for x, 
y ∈ 𝑆̂𝑆, then 

(δn ∘ 𝑔̂𝑔n)(a) = ⋁𝑎𝑎=𝑥𝑥𝑥𝑥{δn(x) ∧ 𝑔̂𝑔n(y)} 

     = ⋁𝑎𝑎=𝑥𝑥𝑥𝑥{𝑔̂𝑔n(y)} 

     ≤ ⋁𝑎𝑎=𝑥𝑥𝑥𝑥𝑔̂𝑔n(xy) 

     = 𝑔̂𝑔n(a) for all n ∈{1,2,3,...,m}. 

Thus δ ∘ 𝑔̂𝑔 ≤ 𝑔̂𝑔. 

Conversely, assume that (δ ∘ 𝑔̂𝑔) ≤ 𝑔̂𝑔 and x,y ∈ 𝑆̂𝑆. 
Then 

𝑔̂𝑔n(xy) ≥ (δn ∘𝑔̂𝑔n)(xy) 

           = ⋁𝑥𝑥𝑥𝑥=𝑢𝑢𝑢𝑢{δn (u) ∧ 𝑔̂𝑔n(v)} 

           ≥ {δn (x) ∧ 𝑔̂𝑔n(y)} 

           = 𝑔̂𝑔n(y) for all n ∈ {1,2,3,...,m}. 

Hence 𝑔̂𝑔(xy) ≥ 𝑔̂𝑔(y). Thus 𝑔̂𝑔 is a MPFL-ideal over 
𝑆̂𝑆. 

(3) It can be proved on the same lines of (2). 

(4) This can be proved by using equations (2) and 
(3). 

Lemma 3.4 The subsequent statements hold for 
an LA-semigroup 𝑆̂𝑆. 

(1) Consider that 𝑔̂𝑔 = (𝑔̂𝑔₁,𝑔̂𝑔₂,...,𝑔̂𝑔m) and ℎ̂ = 
(ℎ̂₁,ℎ̂₂,...,ℎ̂m) be two MPF-sub LA-semigroups 
over 𝑆̂𝑆. Thus 𝑔̂𝑔 ∧ ℎ̂ is also a MPF-sub LA-
semigroup over 𝑆̂𝑆. 

(2) Consider that 𝑔̂𝑔 = (𝑔̂𝑔₁,𝑔̂𝑔₂,...,𝑔̂𝑔m) and ℎ̂ = 
(ℎ̂₁,ℎ̂₂,...,ℎ̂m) be two multi-polar fuzzy left (right, 
two-sided) ideals over 𝑆̂𝑆. Then 𝑔̂𝑔 ∧ ℎ̂ is also a 
multi-polar fuzzy left (right, two-sided) ideal 
over 𝑆̂𝑆. 

Proof. Assume that 𝑔̂𝑔 = (𝑔̂𝑔₁,𝑔̂𝑔₂,...,𝑔̂𝑔m) and ℎ̂ = 
(ℎ̂₁,ℎ̂₂,...,ℎ̂m) be two MPF-sub LA-semigroups 
over 𝑆̂𝑆. Then 

(𝑔̂𝑔n ∧ ℎ̂n)(xy) = 𝑔̂𝑔n(xy) ∧ ℎ̂n(xy) 

                      ≥ (𝑔̂𝑔n(x) ∧ 𝑔̂𝑔n(y)) ∧ (ℎ̂n(x) ∧ ℎ̂n(y)) 

                    = (𝑔̂𝑔n(x) ∧ ℎ̂n(x)) ∧ (𝑔̂𝑔n(y) ∧ ℎ̂n(y)) 

                      = (𝑔̂𝑔n ∧ ℎ̂n)(x) ∧ ( 𝑔̂𝑔n ∧ ℎ̂n)(y) 

for each n ∈ {1,2,3,...,m}. 

Thus, 𝑔̂𝑔 ∧ ℎ̂ is a MPF-sub LA-semigroup over 𝑆̂𝑆. 

Similar methods can be applied to prove other 
cases. 

Proposition 3.1 Suppose that 𝑔̂𝑔 = (𝑔̂𝑔₁,𝑔̂𝑔₂,...,𝑔̂𝑔m) 
be a MPF-subset over 𝑆̂𝑆. Then 𝑔̂𝑔 is a MPF-sub 
LA-semigroup (left, right, two-sided ideal) over 
𝑆̂𝑆 iff 𝑔̂𝑔t = {x ∈ 𝑆̂𝑆 | 𝑔̂𝑔(x) ≥ t} ≠ φ is a sub LA-
semigroup (left, right, two-sided ideal) over 𝑆̂𝑆 for 
every t = (t₁,t₂,...,tm) ∈ (0,1]m. 

Proof. Suppose 𝑔̂𝑔 is a MPF-sub LA-semigroup 
over 𝑆̂𝑆.Consider x, y ∈ 𝑔̂𝑔t. Then 𝑔̂𝑔n(x) ≥ tn and 
𝑔̂𝑔n(y) ≥ tn for each n ∈ {1,2,3,...,m}. As 𝑔̂𝑔 is a 
MPF-sub LA-semigroup over 𝑆̂𝑆, we have 𝑔̂𝑔n(xy) 
≥ 𝑔̂𝑔n(x) ∧ 𝑔̂𝑔n(y) ≥ tn ∧ tn = tn for every n ∈ 
{1,2,3,...,m}. Thus xy ∈ 𝑔̂𝑔t. So 𝑔̂𝑔t is a sub LA-
semigroup over 𝑆̂𝑆. 

Conversely, assume that 𝑔̂𝑔t ≠ φ is a sub LA-
semigroup over 𝑆̂𝑆. On contrary, let 𝑔̂𝑔 is not a 
MPF-sub LA-semigroup over 𝑆̂𝑆. Consider x, y ∈ 
𝑆̂𝑆 with 𝑔̂𝑔n(xy) < 𝑔̂𝑔n(x) ∧ 𝑔̂𝑔n(y) for  n ∈
{1,2,3,..,m}. Take tn = 𝑔̂𝑔n(x) ∧ 𝑔̂𝑔n(y) for every n 
∈ {1,2,3,...,m}. Then x, y ∈ 𝑔̂𝑔t but xy ∉ 𝑔̂𝑔t, this 
contradicts the hypothesis. Hence 𝑔̂𝑔(xy) ≥ 𝑔̂𝑔(x) ∧ 
𝑔̂𝑔(y). Thus 𝑔̂𝑔 is a MPF-sub LA-semigroup over 𝑆̂𝑆. 

Similar methods can be applied to prove other 
cases. 
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Next, we define the multi-polar fuzzy generalized 
bi-ideal (MPFGB-ideal) over 𝑆̂𝑆. 

Definition 3.6 A MPF-subset 𝑔̂𝑔 = (𝑔̂𝑔₁,𝑔̂𝑔₂,...,𝑔̂𝑔m) 
over 𝑆̂𝑆 is considered a MPFGB-ideal over 𝑆̂𝑆 if for 
each x, y, z ∈ 𝑆̂𝑆, 𝑔̂𝑔((xy)z) ≥ 𝑔̂𝑔(x) ∧ 𝑔̂𝑔(z), that is 
𝑔̂𝑔n((xy)z) ≥ 𝑔̂𝑔n(x) ∧ 𝑔̂𝑔n(z) for each n ∈ {1,2,...,m}. 

Lemma 3.5 A subset 𝐺̂𝐺 over 𝑆̂𝑆 which is non-
empty is a GB-ideal over 𝑆̂𝑆 iff 𝐶̂𝐶𝐺𝐺 the multi-polar 
characteristic function of 𝐺̂𝐺 is a MPFGB-ideal 
over 𝑆̂𝑆. 

Proof. It can be showed on the same lines of 
Lemma 3.2. 

Lemma 3.6 A MPF-subset 𝑔̂𝑔 over 𝑆̂𝑆 is a MPFGB-
ideal over 𝑆̂𝑆 iff (𝑔̂𝑔 ∘ δ) ∘ 𝑔̂𝑔 ≤ 𝑔̂𝑔.  

Proof. Suppose 𝑔̂𝑔 = (𝑔̂𝑔₁,𝑔̂𝑔₂,...,𝑔̂𝑔m) be a MPFGB-
ideal over 𝑆̂𝑆, i.e. 𝑔̂𝑔n((xy)z) ≥ 𝑔̂𝑔n(x) ∧ 𝑔̂𝑔n(z) for 
each n ∈ {1,2,3,...,m} and x, y, z ∈ 𝑆̂𝑆. Consider a 
∈ 𝑆̂𝑆. If a ≠ bc for some b, c ∈ 𝑆̂𝑆 thus ((𝑔̂𝑔 ∘ δ) ∘
𝑔̂𝑔)(a) = 0. Therefore, (𝑔̂𝑔 ∘ δ) ∘ 𝑔̂𝑔 ≤ 𝑔̂𝑔. But if a = xy 
for some x,y ∈ 𝑆̂𝑆. Thus for every n ∈ {1,2,3,...,m}. 

((𝑔̂𝑔n ∘δn)∘𝑔̂𝑔n))(a) = ⋁𝑎𝑎=𝑥𝑥𝑥𝑥{(𝑔̂𝑔n ∘ δn)(x) ∧ 𝑔̂𝑔n(y)} 

                     = 
⋁𝑎𝑎=𝑥𝑥𝑥𝑥{⋁𝑥𝑥=𝑢𝑢𝑢𝑢{𝑔̂𝑔n(u)∧δn(v)}∧ 𝑔̂𝑔n(y)}

                    = ⋁𝑎𝑎=𝑥𝑥𝑥𝑥{⋁𝑥𝑥=𝑢𝑢𝑢𝑢{𝑔̂𝑔n(u) ∧ 𝑔̂𝑔n (y)}} 

                    ≤ ⋁𝑎𝑎=𝑥𝑥𝑥𝑥{⋁𝑥𝑥=𝑢𝑢𝑢𝑢𝑔̂𝑔n((uv)y)} 

                    = ⋁𝑎𝑎=𝑥𝑥𝑥𝑥{𝑔̂𝑔n(xy)}  

                    = 𝑔̂𝑔n(a) for all n ∈ {1,2,3,...,m}. 

So (𝑔̂𝑔 ∘ δ) ∘ 𝑔̂𝑔 ≤ 𝑔̂𝑔. 

Conversely, let (𝑔̂𝑔 ∘ δ) ∘ 𝑔̂𝑔 ≤ 𝑔̂𝑔 and x, y, z ∈ 𝑆̂𝑆. 
Then 

   𝑔̂𝑔n((xy)z)   ≥ ((𝑔̂𝑔n ∘ δn) ∘ 𝑔̂𝑔n)((xy)z) 

        = ⋁(xy)z=𝑢𝑢𝑢𝑢{(𝑔̂𝑔n ∘ δn)(u) ∧ 𝑔̂𝑔n(v)} 

        ≥ (𝑔̂𝑔n ∘ δn)(xy) ∧ 𝑔̂𝑔n(z) 

        = ⋁𝑥𝑥𝑥𝑥=𝑎𝑎𝑎𝑎{𝑔̂𝑔n(a) ∧ δn(b)} ∧ 𝑔̂𝑔n(z) 

        ≥ {𝑔̂𝑔n(x) ∧ δn(y)} ∧ 𝑔̂𝑔n(z) 

        = 𝑔̂𝑔n(x) ∧ 𝑔̂𝑔n(z) for every n ∈ 
{1,2,3,...,m}. 

Hence, 𝑔̂𝑔((xy)z) ≥ 𝑔̂𝑔(x) ∧ 𝑔̂𝑔(z). Thus 𝑔̂𝑔 is a  

 

MPFGB-ideal over 𝑆̂𝑆. 

Proposition 3.2 Consider 𝑔̂𝑔 = (𝑔̂𝑔₁,𝑔̂𝑔₂,...,𝑔̂𝑔m) is a 
multi-polar fuzzy subset over 𝑆̂𝑆. Thus 𝑔̂𝑔 is a 
MPFGB-ideal over 𝑆̂𝑆 iff 𝑔̂𝑔t = {x ∈ 𝑆̂𝑆 | 𝑔̂𝑔(x) ≥ t} ≠ 
𝜑𝜑 is a GB-ideal over 𝑆̂𝑆 for every t = (t₁,t₂,t₃,...,tm) 
∈ (0,1]m.  

Proof. Suppose that 𝑔̂𝑔 be a MPFGB-ideal over 𝑆̂𝑆. 
Let x, z ∈ 𝑔̂𝑔t and y ∈ 𝑆̂𝑆. So 𝑔̂𝑔n(x) ≥ tn and 𝑔̂𝑔n(z) ≥ 
tn for every n ∈ {1,2,...,m}. Due to the fact that 𝑔̂𝑔 
is a MPFGB-ideal, we obtain 𝑔̂𝑔n((xy)z) ≥ 𝑔̂𝑔n(x) ∧ 
𝑔̂𝑔n(z) ≥ tn ∧ tn = tn for every n ∈ {1,2,...,m}. Thus 
(xy)z ∈ 𝑔̂𝑔t, that is 𝑔̂𝑔t is a GB-ideal over 𝑆̂𝑆. 

Conversely, let 𝑔̂𝑔t ≠ φ is a GB-ideal over 𝑆̂𝑆. On 
contrary considered that 𝑔̂𝑔 is not a MPFGB-ideal 
over 𝑆̂𝑆. Suppose x, y, z ∈ 𝑆̂𝑆 with 𝑔̂𝑔n((xy)z) < 𝑔̂𝑔n(x) 
∧ 𝑔̂𝑔n(z) for any n ∈ {1,2,...,m}. Suppose tn = 𝑔̂𝑔n(x) 
∧ 𝑔̂𝑔n(z) for every n ∈ {1,2,...,m}. Then x, z ∈ 𝑔̂𝑔t 
but (xy)z ∉ 𝑔̂𝑔t, this contradicts the hypothesis. 
Hence 𝑔̂𝑔((xy)z) ≥ 𝑔̂𝑔(x) ∧ 𝑔̂𝑔(z), that is 𝑔̂𝑔 is a 
MPFGB-ideal over 𝑆̂𝑆. Now, we define the multi-
polar fuzzy bi-ideal (MPFB-ideal) over 𝑆̂𝑆. 

Definition 3.7 A multi-polar fuzzy sub LA-
semigroup 𝑔̂𝑔 = (𝑔̂𝑔₁,𝑔̂𝑔₂,...,𝑔̂𝑔m) over 𝑆̂𝑆 is a MPFB-
ideal over 𝑆̂𝑆 if for each x, y, z ∈ 𝑆̂𝑆, 𝑔̂𝑔((xy)z) ≥ 𝑔̂𝑔(x) 
∧ 𝑔̂𝑔(z) that is, 𝑔̂𝑔n((xy)z) ≥ 𝑔̂𝑔n(x) ∧ 𝑔̂𝑔n(z) for each 
n ∈ {1,2,3,...,m}. 

Lemma 3.7 A subset 𝐻̂𝐻 over 𝑆̂𝑆 which is non-
empty is a bi-ideal over 𝑆̂𝑆 iff 𝐶̂𝐶𝐻̂𝐻 is a MPFB-ideal 
over 𝑆̂𝑆. 

Proof. It is followed by Lemmas 3.2 and 3.5. 

Lemma 3.8 A multi-polar fuzzy sub LA-
semigroup 𝑔̂𝑔 of 𝑆̂𝑆 is a MPFB-ideal over 𝑆̂𝑆 iff (𝑔̂𝑔 ∘ 
δ) ∘ 𝑔̂𝑔 ≤ 𝑔̂𝑔. 

Proof. Follows from Lemma 3.6. 

Proposition 3.3 Let 𝑔̂𝑔 = (𝑔̂𝑔₁,𝑔̂𝑔₂,...,𝑔̂𝑔m) is a MPF-
sub LA-semigroup over 𝑆̂𝑆. So 𝑔̂𝑔 is a MPFB-ideal 
over 𝑆̂𝑆 iff 𝑔̂𝑔t = {x ∈ 𝑆̂𝑆 | g(x) ≥ t} ≠ φ is a bi-ideal 
over 𝑆̂𝑆 for every t = (t₁,t₂,t₃,...,tm) ∈ (0,1]m. 

Proof. It is followed by Proposition 3.2. 

Remark 3.1 Every MPFB-ideal of 𝑆̂𝑆 is a 
MPFGB-ideal over 𝑆̂𝑆. 

The example below illustrate that the converse 
may not hold. 
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Example 3.3 Let 𝑆̂𝑆 = {p, q, r, s} be an LA-
semigroup under binary operation "∙" described 
below in Table 4.  

 Table 4. LA-semigroup 

 

Consider 𝑔̂𝑔 = (𝑔̂𝑔₁,𝑔̂𝑔₂,𝑔̂𝑔₃,𝑔̂𝑔₄) be a 4-polar fuzzy 
subset over 𝑆̂𝑆 with 𝑔̂𝑔(p) = (0.2,0.4,0.4,0.5),  𝑔̂𝑔(q) 
= (0,0,0,0),  𝑔̂𝑔(r) = (0,0,0,0), 𝑔̂𝑔(s) = 
(0.6,0.7,0.8,0.9). Thus it is simple to reveal that 𝑔̂𝑔 
is a 4-polar fuzzy generalized bi-ideal over 𝑆̂𝑆. 
Now, 𝑔̂𝑔(q) = 𝑔̂𝑔(p∙s) = (0,0,0,0) ≱ (0.2,0.4,0.4,0.5) 
= 𝑔̂𝑔(p) ∧ 𝑔̂𝑔(s). So 𝑔̂𝑔 is not a bi-ideal over 𝑆̂𝑆. 

Now we express the multi-polar fuzzy quasi-ideal 
(MPFQ-ideal) over 𝑆̂𝑆. 

Definition 3.8 A MPF-subset 𝑔̂𝑔 = (𝑔̂𝑔₁,𝑔̂𝑔₂,...,𝑔̂𝑔m) 
over 𝑆̂𝑆 is a MPFQ-ideal over 𝑆̂𝑆 if (𝑔̂𝑔 ∘ δ) ∧ (δ ∘ 𝑔̂𝑔) 
≤  𝑔̂𝑔, means that (𝑔̂𝑔n ∘ δn) ∧ (δn ∘ 𝑔̂𝑔n) ≤ 𝑔̂𝑔n for every 
n ∈ {1,2,3,...,m}. 

Lemma 3.9 A subset 𝐽𝐽 over Ŝ which is non-empty 
is a quasi-ideal over Ŝ iff the multi-polar 
characteristic function 𝐶̂𝐶𝑗̂𝑗 of 𝐽𝐽 is a MPFQ-ideal 
over 𝑆̂𝑆. 

Proof. Consider that 𝐽𝐽 be a quasi-ideal over Ŝ, i.e 
𝐽𝐽𝑆̂𝑆 ∩ 𝑆̂𝑆𝐽𝐽 ⊆ 𝐽𝐽. We show that (𝐶̂𝐶𝑗̂𝑗 ∘ δ) ∧ (δ ∘ 𝐶̂𝐶𝑗̂𝑗) ≤ 𝐶̂𝐶𝑗̂𝑗, 
means that 

((𝐶̂𝐶𝑗̂𝑗 ∘ δ) ∧ (δ ∘ 𝐶̂𝐶𝑗̂𝑗))(x) ≤ 𝐶̂𝐶𝑗̂𝑗(x) for all x ∈ 𝑆̂𝑆.  

Let we have two cases, 

Case1 : If x ∈ 𝐽𝐽, then 𝐶̂𝐶𝑗̂𝑗(x) = (1,1,...,1) ≥ ((𝐶̂𝐶𝑗̂𝑗 ∘ δ) 
∧ (δ ∘ 𝐶̂𝐶𝑗̂𝑗))(x). 

Therefore (𝐶̂𝐶𝑗̂𝑗 ∘ δ) ∧ (δ ∘ 𝐶̂𝐶𝑗̂𝑗) ≤ 𝐶̂𝐶𝑗̂𝑗. 

Case 2 : If x ∉ 𝐽𝐽, so x ∉ 𝐽𝐽𝑆̂𝑆 ∩ 𝑆̂𝑆𝐽𝐽. This implies that 
x ≠ ab or x ≠ cd for any a ∈ 𝐽𝐽, b ∈ 𝑆̂𝑆, c ∈ 𝑆̂𝑆, d ∈ 𝐽𝐽. 
Thus either (𝐶̂𝐶𝑗̂𝑗 ∘ δ)(x) = (0,0,...,0) or (δ ∘ 𝐶̂𝐶𝑗̂𝑗)(x) = 
(0,0,...,0), means that ((𝐶̂𝐶𝑗̂𝑗 ∘ δ) ∧ (δ ∘ 𝐶̂𝐶𝑗̂𝑗))(x) = 
(0,0,...,0) ≤ 𝐶̂𝐶𝑗̂𝑗(x). So that (𝐶̂𝐶𝑗̂𝑗 ∘ δ) ∧ (δ ∘ 𝐶̂𝐶𝑗̂𝑗) ≤ 𝐶̂𝐶𝑗̂𝑗. 

Conversely, let z ∈ 𝐽𝐽𝑆̂𝑆 ∩ 𝑆̂𝑆𝐽𝐽. Thus z = ax and z = 
yb, where x, y ∈ 𝑆̂𝑆 and a, b ∈ 𝐽𝐽. Since 𝐶̂𝐶𝑗̂𝑗 is a 
MPFQ-ideal over 𝑆̂𝑆, we get 

𝐶̂𝐶𝑗̂𝑗(z) ≥ ((𝐶̂𝐶𝑗̂𝑗 ∘ δ) ∧ (δ ∘ 𝐶̂𝐶𝑗̂𝑗))(z) 

        = (𝐶̂𝐶𝑗̂𝑗 ∘ δ)(z) ∧ (δ ∘ 𝐶̂𝐶𝑗̂𝑗)(z) 

       = {⋁z=𝑢𝑢𝑢𝑢{𝐶̂𝐶𝑗̂𝑗(u)∧δ(v)}} ∧
{⋁z=𝑝𝑝𝑝𝑝{δ(p)∧𝐶̂𝐶𝑗̂𝑗(q)}} 

       ≥ {𝐶̂𝐶𝑗̂𝑗(a) ∧ δ(x)} ∧ {δ(y) ∧ 𝐶̂𝐶𝑗̂𝑗(b)}  

      = (1,1,...,1) since z = ax and z = yb. 

Thus 𝐶̂𝐶𝑗̂𝑗(z) = (1,1,...,1). Hence z ∈ 𝐽𝐽. 

Proposition 3.4 Consider 𝑔̂𝑔 = (𝑔̂𝑔₁,𝑔̂𝑔₂,...,𝑔̂𝑔m) be a 
MPF-subset over 𝑆̂𝑆. Thus 𝑔̂𝑔 is a MPFQ-ideal over 
Ŝ iff 𝑔̂𝑔t  = {s ∈ 𝑆̂𝑆 | 𝑔̂𝑔(s) ≥ t} ≠ φ is a quasi-ideal 
over 𝑆̂𝑆 for every t = (t₁,t₂,t₃,...,tm) ∈ (0,1]m. 

Proof. Consider 𝑔̂𝑔 be a MPFQ-ideal over 𝑆̂𝑆. To 
show  that 𝑔̂𝑔t𝑆̂𝑆 ∩ 𝑆̂𝑆𝑔̂𝑔t ⊆ 𝑔̂𝑔t. Let z ∈ 𝑔̂𝑔t𝑆̂𝑆 ∩ 𝑆̂𝑆𝑔̂𝑔t. 
Then z ∈ 𝑔̂𝑔t𝑆̂𝑆 and z ∈ 𝑆̂𝑆𝑔̂𝑔t. So z = ax and z = yb 
for some x,y ∈ 𝑆̂𝑆 and a,b ∈ 𝑔̂𝑔t. Thus 𝑔̂𝑔n(a) ≥ tn and 
𝑔̂𝑔n(b) ≥ tn for every n ∈ {1,2,3,...,m}. Now, 

(𝑔̂𝑔n ∘ δn)(z)  = ⋁z=𝑢𝑢𝑢𝑢{𝑔̂𝑔n(u) ∧ δn(v)} 

       ≥ 𝑔̂𝑔n(a) ∧ δn(x) because z = ax 

       =  𝑔̂𝑔n(a) ∧ 1   

       =  𝑔̂𝑔n(a) 

                     ≥ tn 

So, (𝑔̂𝑔n ∘ δn)(z) ≥ tn for each n ∈ {1,2,...,m}. Now, 

(δn ∘ 𝑔̂𝑔n)(z)   = ⋁z=𝑢𝑢𝑢𝑢{δn(u) ∧ 𝑔̂𝑔n(v)} 

        ≥ δn(y) ∧ 𝑔̂𝑔n(b) because z = yb 

        = 1 ∧ 𝑔̂𝑔n(b) 

        = 𝑔̂𝑔n(b) 

                      ≥ tn 

So, (δn ∘ 𝑔̂𝑔n)(z) ≥ tn for every n ∈ {1,2,...,m}.    

Thus, ((𝑔̂𝑔n ∘ δn) ∧ ( δn ∘𝑔̂𝑔n))(z)  

  = (( 𝑔̂𝑔n ∘ δn)(z) ∧ ( δn ∘𝑔̂𝑔n )(z) ≥ tn ∧ tn = tn 

for every n ∈{1,2,3,...,m}. So, ((𝑔̂𝑔 ∘ δ) ∧ (δ ∘ 
𝑔̂𝑔))(z) ≥ t. As 𝑔̂𝑔(z) ≥ ((𝑔̂𝑔 ∘ δ) ∧ (δ ∘ 𝑔̂𝑔))(z) ≥ t, thus 
z ∈ 𝑔̂𝑔t. Therefore it is proved that 𝑔̂𝑔t is a quasi-
ideal over 𝑆̂𝑆. 

• p q r s 

p s s q q 

Q s s s s 

R s s q s 

S s s s s 
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Conversely, on contrary, let 𝑔̂𝑔 is not a MPFQ-
ideal over 𝑆̂𝑆. Let z ∈ 𝑆̂𝑆 be such that 𝑔̂𝑔n(z) < (𝑔̂𝑔n ∘ 
δn)(z) ∧ (δn ∘𝑔̂𝑔n)(z) for any n ∈{1,2,...,m}. Take tn 
∈ (0,1] with tn = (𝑔̂𝑔n ∘ δn)(z) ∧ ( δn ∘ 𝑔̂𝑔n)(z) for 
every n ∈{1,2,3,...,m}. It follows that z ∈ (𝑔̂𝑔n ∘ 
δn)tn and z ∈ (δn∘𝑔̂𝑔n)tn but z ∉ (𝑔̂𝑔n)tn for some n. 
Therefore, z ∈ (𝑔̂𝑔 ∘ 𝑆̂𝑆)t and z ∈ (𝑆̂𝑆 ∘ 𝑔̂𝑔)t but z ∉ 𝑔̂𝑔t. 
Which leads to contradiction. 

This proves that (𝑔̂𝑔 ∘ δ) ∧ (δ ∘ 𝑔̂𝑔) ≤ 𝑔̂𝑔. 

Lemma 3.10 Every multi-polar fuzzy one-sided 
ideal over 𝑆̂𝑆 is a MPFQ-ideal over 𝑆̂𝑆. 

Proof. It is followed by Lemma 3.3. 

    The subsequent example demonstrates that the 
converse may not hold. 

 Example 3.4 Let 𝑆̂𝑆 = {r, s, t, u} be an LA-
semigroup under binary operation "∙" described 
below in Table 5.  

Table 5. LA-semigroup 

 

Define a 5-polar fuzzy subset 𝑔̂𝑔 = (𝑔̂𝑔₁,𝑔̂𝑔₂,𝑔̂𝑔₃,𝑔̂𝑔₄,𝑔̂𝑔₅) 
of 𝑆̂𝑆 as follows: 

𝑔̂𝑔(s) = 𝑔̂𝑔(t) = (0.4,0.4,0.5,0.5,0.6), 𝑔̂𝑔(r) = 𝑔̂𝑔(u) = 
(0,0,0,0,0). Thus it is simple to reveal that 𝑔̂𝑔t is a 
quasi-ideal over 𝑆̂𝑆. Therefore by using 
Proposition 4, 𝑔̂𝑔 is a 5-polar FQ-ideal over Ŝ. 
Now, 

𝑔̂𝑔(u) = 𝑔̂𝑔(s.r) = (0,0,0,0,0)  

                     ≱ (0.4,0.4,0.5,0.5,0.6) = 𝑔̂𝑔(s). 

So 𝑔̂𝑔 is not a 5-polar FR-ideal over 𝑆̂𝑆. 

Lemma 3.11 Suppose that 𝑔̂𝑔 = (𝑔̂𝑔₁,𝑔̂𝑔₂,...,𝑔̂𝑔m) and 
ℎ̂ = (ℎ̂₁,ℎ̂₂,...,ℎ̂m) be MPFR-ideal and MPFL-ideal 
over 𝑆̂𝑆. Then 𝑔̂𝑔 ∧ ℎ̂ is a multi-polar FQ-ideal over 
𝑆̂𝑆. 

Proof. Consider 𝑔̂𝑔 = (𝑔̂𝑔₁,𝑔̂𝑔₂,...,𝑔̂𝑔m) and ℎ̂ = 
(ℎ̂₁,ℎ̂₂,...,ℎ̂m) be MPFR-ideal and MPFL-ideal 
over 𝑆̂𝑆. Let s ∈ 𝑆̂𝑆. If s ≠ ab for a,b ∈ 𝑆̂𝑆. We have 

((𝑔̂𝑔 ∧ ℎ̂)∘δ) ∧ (δ ∘ (𝑔̂𝑔 ∧ ℎ̂)) ≤ (𝑔̂𝑔 ∧ ℎ̂). 

If s = pq for p,q ∈ 𝑆̂𝑆, then 

     (((𝑔̂𝑔n ∧ ℎ̂n) ∘ δn) ∧ (δn ∘ (𝑔̂𝑔n ∧ ℎ̂n)))(s) 

     = ((𝑔̂𝑔n ∧ ℎ̂n) ∘ δn)(s) ∧ (δn ∘ (𝑔̂𝑔n ∧ ℎ̂n))(s) 

     = {
⋁s=𝑝𝑝𝑝𝑝{(𝑔̂𝑔𝑛𝑛 ∧ ℎ̂𝑛𝑛)(p) ∧  δ𝑛𝑛(q)} ∧

 ⋁s=𝑝𝑝𝑝𝑝{δ𝑛𝑛(p) ∧  (𝑔̂𝑔𝑛𝑛 ∧ ℎ̂𝑛𝑛)(q)}     }     

    = ⋁𝑠𝑠=𝑝𝑝𝑝𝑝{(𝑔̂𝑔𝑛𝑛 ∧ ℎ̂𝑛𝑛)(𝑝𝑝)}∧⋁s=𝑝𝑝𝑝𝑝{(𝑔̂𝑔n∧ℎ̂n)(q)} 

     = ⋁s=𝑝𝑝𝑝𝑝{(𝑔̂𝑔𝑛𝑛 ∧ ℎ̂𝑛𝑛)(𝑝𝑝)  ∧  (𝑔̂𝑔𝑛𝑛 ∧ ℎ̂𝑛𝑛)(𝑞𝑞)} 

     = ⋁s=𝑝𝑝𝑝𝑝{(𝑔̂𝑔n(p) ∧ ℎ̂n(p)) ∧ (𝑔̂𝑔n(q) ∧ ℎ̂n(q)) 

      ≤ ⋁s=𝑝𝑝𝑝𝑝{𝑔̂𝑔n(p) ∧ ℎ̂n(q)}    

      ≤ ⋁s=𝑝𝑝𝑝𝑝{(𝑔̂𝑔n(pq) ∧ ℎ̂n(pq)} 

      = ⋁s=𝑝𝑝𝑝𝑝{(𝑔̂𝑔n ∧ ℎ̂n)(pq)} 

      = (𝑔̂𝑔n ∧ ℎ̂n)(s) for every n ∈ {1,2,...,m}. 

Thus ((𝑔̂𝑔∧ℎ̂)∘δ) ∧ (δ∘(𝑔̂𝑔∧ℎ̂)) ≤ (𝑔̂𝑔∧ℎ̂), that is 𝑔̂𝑔 ∧ 
ℎ̂ be a MPFQ-ideal over 𝑆̂𝑆. 

Now, we define the multi-polar fuzzy interior-
ideal (MPFI-ideal) over 𝑆̂𝑆. 

Definition 3.9 A multi-polar fuzzy sub LA-
semigroup 𝑔̂𝑔 = (𝑔̂𝑔₁,𝑔̂𝑔₂,...,𝑔̂𝑔m) of 𝑆̂𝑆 is a MPFI-ideal 
over 𝑆̂𝑆 if for each x, a, y ∈ 𝑆̂𝑆, 𝑔̂𝑔((xa)y) ≥ 𝑔̂𝑔(a), that 
is 𝑔̂𝑔n((xa)y) ≥ 𝑔̂𝑔n (a) for every n ∈ {1,2,3,...,m}. 

Lemma 3.12 A subset 𝐼𝐼 over 𝑆̂𝑆 which is non-
empty is an interior ideal over 𝑆̂𝑆 iff the multi-
polar characteristic function 𝐶̂𝐶𝐼𝐼 over 𝐼𝐼 is a MPFI-
ideal over 𝑆̂𝑆. 

Proof: Consider that 𝐼𝐼 is an interior ideal over 𝑆̂𝑆. 
From Lemma 2, 𝐶̂𝐶𝐼𝐼 is a multi-polar fuzzy sub LA-
semigroup over 𝑆̂𝑆. Now, we show that 𝐶̂𝐶𝐼𝐼((pq)r) 
≥ 𝐶̂𝐶𝐼𝐼(q) for every p,q,r ∈ 𝑆̂𝑆. Let we have the four 
cases, 

Case 1 : Consider that q ∈ 𝐼𝐼 and p, r ∈ 𝑆̂𝑆. Then 
𝐶̂𝐶𝐼𝐼(q) = (1,1,...,1). Since 𝐼𝐼 is an interior ideal over 
𝑆̂𝑆, so (pq)r ∈ 𝐼𝐼. Then 𝐶̂𝐶𝐼𝐼((pq)r) = (1,1,...,1). Hence 
𝐶̂𝐶𝐼𝐼((pq)r) ≥ 𝐶̂𝐶𝐼𝐼(q). 
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Case 2 : Let q ∉ 𝐼𝐼 and p,r ∈ 𝑆̂𝑆. Then 𝐶̂𝐶𝐼𝐼(q) = 
(0,0,...,0). Clearly, 𝐶̂𝐶𝐼𝐼((pq)r) ≥ 𝐶̂𝐶𝐼𝐼(q). Hence the 
multi-polar characteristic function 𝐶̂𝐶𝐼𝐼 over 𝐼𝐼 is an 
multi-polar FI-ideal over 𝑆̂𝑆. 

Conversely, consider that 𝐶̂𝐶𝐼𝐼 is a MPFI-ideal over 
𝑆̂𝑆. Then by Lemma 2, 𝐼𝐼 is a sub LA-semigroup 
over 𝑆̂𝑆. Let p,r ∈ 𝑆̂𝑆 and q ∈ 𝐼𝐼. Then, 𝐶̂𝐶𝐼𝐼(q) = 
(1,1,...,1). By the hypothesis, 𝐶̂𝐶𝐼𝐼((pq)r) ≥ 𝐶̂𝐶𝐼𝐼(q) = 
(1,1,...,1). Hence 𝐶̂𝐶𝐼𝐼((pq)r) = (1,1,...,1). This 
proves that (pq)r ∈ 𝐼𝐼, that is 𝐼𝐼 is an interior ideal 
over 𝑆̂𝑆. 

Lemma 3.13 Let 𝑔̂𝑔 be a MPF-sub LA-semigroup 
over 𝑆̂𝑆. Then 𝑔̂𝑔 is a MPFI-ideal over 𝑆̂𝑆 iff (δ ∘ 𝑔̂𝑔) 
∘ δ ≤ 𝑔̂𝑔.   

Proof. Let 𝑔̂𝑔 = (𝑔̂𝑔₁,𝑔̂𝑔₂,...,𝑔̂𝑔m) be a multi-polar FI-
ideal over 𝑆̂𝑆. We demonstrate that (δ ∘ 𝑔̂𝑔) ∘ δ ≤ 𝑔̂𝑔. 
Let z ∈ 𝑆̂𝑆. Then for every n ∈ {1,2,...,m}. 

((δn ∘ 𝑔̂𝑔n) ∘ δn)(z) = ⋁z=𝑢𝑢𝑢𝑢{(δn ∘ 𝑔̂𝑔n)(u) ∧ δn(v)} 

               = ⋁z=𝑢𝑢𝑢𝑢{(δn ∘ 𝑔̂𝑔n)(u)} 

               =⋁z=𝑢𝑢𝑢𝑢{⋁u=𝑎𝑎𝑎𝑎{δn(a) ∧ 𝑔̂𝑔n(b)} 

               = ⋁z=𝑢𝑢𝑢𝑢{⋁u=𝑎𝑎𝑎𝑎{𝑔̂𝑔n(b)} 

               = ⋁z=(𝑎𝑎𝑎𝑎)𝑣𝑣{𝑔̂𝑔n(b)} 

                ≤ ⋁z=(𝑎𝑎𝑎𝑎)𝑣𝑣{𝑔̂𝑔n((ab)v)} 

                = 𝑔̂𝑔n(z) for every n ∈ 
{1,2,...,m}. 

Thus (δ ∘ 𝑔̂𝑔) ∘ δ ≤ 𝑔̂𝑔. 

In the reverse, assume that (δ ∘ 𝑔̂𝑔) ∘ δ ≤ 𝑔̂𝑔. We 
only prove that 𝑔̂𝑔n((xa)y) ≥ 𝑔̂𝑔n(a) for each x,a,y ∈ 
𝑆̂𝑆 and for every n ∈ {1,2,...,m}. Let z = (xa)y. 
Now for every n ∈ {1,2,...,m}. 

𝑔̂𝑔n((xa)y) ≥ ((δn ∘ 𝑔̂𝑔n) ∘ δn)((xa)y) 

  = ⋁(xa)y=𝑢𝑢𝑢𝑢{(δn ∘ 𝑔̂𝑔n)(u) ∧ δn(v)} 

               ≥ (δn ∘ 𝑔̂𝑔n)(xa) ∧ δn(y) 

  = (δn ∘ 𝑔̂𝑔n)(xa) 

  = ⋁xa=𝑝𝑝𝑝𝑝{(δn(p) ∧ 𝑔̂𝑔n(q)} 

  ≥ δn(x) ∧ 𝑔̂𝑔n(a) 

  = 𝑔̂𝑔n(a) for all n ∈ {1,2,...,m}. 

So, 𝑔̂𝑔n((xa)y) ≥ 𝑔̂𝑔n(a) for each n ∈ {1,2,...,m}. 
Thus 𝑔̂𝑔 is a MPFI-ideal over Ŝ. 

Proposition 3.5 Consider 𝑔̂𝑔 = (𝑔̂𝑔₁,𝑔̂𝑔₂,...,𝑔̂𝑔m) be a 
MPF-subset over Ŝ. Then 𝑔̂𝑔 is a multi-polar FI-
ideal over 𝑆̂𝑆 iff 𝑔̂𝑔t = {x ∈ Ŝ | 𝑔̂𝑔(x) ≥ t} ≠ φ is an 
interior ideal over Ŝ for each t = (t₁,t₂,t₃,...,tm) ∈ 
(0,1]m. 

Proof. It can be proved on the same lines of 
Propositions 3.1 and 3.2. 

4.  REGULAR LA-SEMIGROUPS 
CHARACTERIZED BY MULTI-POLAR 
FUZZY IDEALS 

Definition 4.1 If for every element s in the LA-
semigroup 𝑆̂𝑆, there exists r ∈ 𝑆̂𝑆 such that s can be 
expressed as s = (sr)s then 𝑆̂𝑆 is a regular LA- 
semigroup. 

Theorem 4.1 [15] Let 𝑆̂𝑆 possesses e with (ae) 𝑆̂𝑆 = 
a𝑆̂𝑆 for each a ∈ 𝑆̂𝑆. So the subsequent assertions 
are equivalent. 

    (1) 𝑆̂𝑆 is regular 

    (2) For all R-ideal 𝑅̂𝑅 and L-ideal  

          𝐿̂𝐿 over 𝑆̂𝑆 we have 𝑅̂𝑅 ∩ 𝐿̂𝐿 = 𝑅̂𝑅𝐿̂𝐿. 

    (3) 𝐽𝐽 = (𝐽𝐽𝑆̂𝑆)𝐽𝐽 for all Q-ideal 𝐽𝐽 over 𝑆̂𝑆. 

Theorem 4.2 If 𝑆̂𝑆 possesses e with (re)𝑆̂𝑆 = r𝑆̂𝑆 for 
each r ∈ 𝑆̂𝑆. Then any MPFQ-ideal over 𝑆̂𝑆 is a 
MPFB-ideal over 𝑆̂𝑆.   

Proof. Consider 𝑔̂𝑔 = (𝑔̂𝑔₁,𝑔̂𝑔₂,...,𝑔̂𝑔m) be any MPFQ-
ideal over 𝑆̂𝑆. Take p,q ∈ 𝑆̂𝑆. Then, 

𝑔̂𝑔n(pq) ≥ ((𝑔̂𝑔n ∘ δn) ∧ (δn ∘ 𝑔̂𝑔n))(pq)  

           = (𝑔̂𝑔n ∘ δn)(pq) ∧ (δn ∘ 𝑔̂𝑔n)(pq) 

           = { 
⋁pq=𝑎𝑎𝑎𝑎{𝑔̂𝑔𝑛𝑛(a) ∧ δ𝑛𝑛(b)} ∧
⋁pq=𝑢𝑢𝑢𝑢{δ𝑛𝑛(u) ∧ 𝑔̂𝑔𝑛𝑛(v)}    } 

           ≥ {𝑔̂𝑔n(p) ∧ δn(q)} ∧ {δn(p) ∧ 𝑔̂𝑔n(q)} 

           = {𝑔̂𝑔n(p) ∧ 1} ∧ {1 ∧ 𝑔̂𝑔n(q)} 

           = 𝑔̂𝑔n(p) ∧ 𝑔̂𝑔n(q) for all n ∈ {1,2,...,m}. 

So, 𝑔̂𝑔(pq) ≥ 𝑔̂𝑔(p) ∧ 𝑔̂𝑔(q). 

Now, let p,q,r ∈ 𝑆̂𝑆. Then, 

(δn ∘ 𝑔̂𝑔n)((pq)r) = ⋁(pq)r=𝑢𝑢𝑢𝑢{δn(u) ∧ 𝑔̂𝑔n(v)} 

            ≥ δn(pq) ∧ 𝑔̂𝑔n(r) 

            = 1 ∧ 𝑔̂𝑔n(r) 

            = 𝑔̂𝑔n(r) 
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So, (δn ∘ 𝑔̂𝑔n)((pq)r) ≥ 𝑔̂𝑔n(r) for all n ∈ {1,2,...,m}. 

Since (pq)r = (pq)(er) = (pe)(qr) ∈ (pe)𝑆̂𝑆 = p𝑆̂𝑆, so 
(pq)r = ps for some s ∈ 𝑆̂𝑆. Thus,            

(𝑔̂𝑔n ∘ δn)((pq)r) = ⋁(pq)r=𝑎𝑎𝑎𝑎{𝑔̂𝑔n(a) ∧ δn(b)} 

            ≥ 𝑔̂𝑔n(p) ∧ δn(s) since (pq)r = ps 

            = 𝑔̂𝑔n(p) ∧ 1 

            = 𝑔̂𝑔n(p) 

So, (𝑔̂𝑔n ∘ δn)((pq)r) ≥ 𝑔̂𝑔n(p) for every n ∈ 
{1,2,...,m}. 

Now, by our assumption 

𝑔̂𝑔n((pq)r) ≥ ((𝑔̂𝑔n ∘ δn) ∧ ( δn ∘𝑔̂𝑔n))((pq)r) 

  = (𝑔̂𝑔n ∘ δn)((pq)r) ∧ (δn ∘𝑔̂𝑔n )((pq)r) 

  ≥ 𝑔̂𝑔n(p) ∧ 𝑔̂𝑔n(r) for every n ∈ {1,2,...,m}. 

Thus, 𝑔̂𝑔((pq)r) ≥ 𝑔̂𝑔(p) ∧ 𝑔̂𝑔(r). This proves that 𝑔̂𝑔 
is an MPFB-ideal over 𝑆̂𝑆. 

Theorem 4.3 The subsequent statements are 
equivalent for an LA-semigroup 𝑆̂𝑆. 

    (1) 𝑆̂𝑆 is regular 

   (2) 𝑔̂𝑔 ∧ ℎ̂ = 𝑔̂𝑔 ∘ ℎ̂ for any MPFR-ideal 𝑔̂𝑔 and 

        MPFL-ideal ℎ̂ over 𝑆̂𝑆. 

Proof. (1) ⇒ (2): Consider 𝑔̂𝑔 = (𝑔̂𝑔₁,𝑔̂𝑔₂,...,𝑔̂𝑔m) and 
ℎ̂ = (ℎ̂₁,ℎ̂₂,...,ℎ̂m) be any MPFR-ideal and MPFL-
ideal of 𝑆̂𝑆. Let a ∈ 𝑆̂𝑆, we get 

(𝑔̂𝑔n ∘ ℎ̂n)(a) = ⋁a=𝑦𝑦𝑦𝑦{𝑔̂𝑔n(y) ∧ ℎ̂n( z)} 

      ≤ ⋁a=𝑦𝑦𝑦𝑦{𝑔̂𝑔n(yz) ∧ ℎ̂n(yz)} 

      = 𝑔̂𝑔n(a) ∧ ℎ̂n(a) 

      = (𝑔̂𝑔n ∧ ℎ̂n)(a) for all n ∈ {1,2,...,m}. 

So, (𝑔̂𝑔 ∘ ℎ̂) ≤ (𝑔̂𝑔 ∧ ℎ̂).  

By assertion (1), for each a ∈ 𝑆̂𝑆, we have a = (ax)a 
for some x ∈ 𝑆̂𝑆. So we get 

(𝑔̂𝑔n ∧ ℎ̂n)(a) = 𝑔̂𝑔n(a) ∧ ℎ̂n(a) 

      ≤ 𝑔̂𝑔n(ax) ∧ ℎ̂n(a) 

      ≤ ⋁a=𝑦𝑦𝑦𝑦{𝑔̂𝑔n(y) ∧ ℎ̂n(z)} 

       = (𝑔̂𝑔n ∘ ℎ̂n)(a) for all n ∈ {1,2,...,m}. 

Thus, (𝑔̂𝑔 ∘ ℎ̂) ≥ (𝑔̂𝑔 ∧ ℎ̂). Hence proved that (𝑔̂𝑔 ∧
ℎ̂) = (𝑔̂𝑔 ∘ ℎ̂). 

(2) ⇒ (1): Suppose that a ∈ 𝑆̂𝑆. Thus a𝑆̂𝑆 is a L-ideal 
over 𝑆̂𝑆 and a𝑆̂𝑆∪𝑆̂𝑆a is a R-ideal over 𝑆̂𝑆 generated 
by a say a𝑆̂𝑆 = 𝐿̂𝐿 and a𝑆̂𝑆∪𝑆̂𝑆a = 𝑅̂𝑅. Now 𝐶̂𝐶𝐿̂𝐿 and 𝐶̂𝐶𝑅̂𝑅 
the multi-polar characteristic functions of 𝐿̂𝐿 and 
𝑅̂𝑅 are MPFL-ideal and MPFR-ideal over 𝑆̂𝑆 by 
using Lemma 3.2. Hence, from Lemma 3.1 and 
assertion (2) we get 

𝐶̂𝐶𝑅̂𝑅𝐿̂𝐿 =  (𝐶̂𝐶𝑅̂𝑅 ∘ 𝐶̂𝐶𝐿̂𝐿) from Lemma 3.1 

       = (𝐶̂𝐶𝑅̂𝑅 ∧ 𝐶̂𝐶𝐿̂𝐿) from 2 

       = 𝐶̂𝐶𝑅̂𝑅∩𝐿̂𝐿 by Lemma 3.1. 

This proves that 𝑅̂𝑅 ∩ 𝐿̂𝐿 = 𝑅̂𝑅𝐿̂𝐿. Thus 𝑆̂𝑆 is regular 
from Theorem 4.1. 

Theorem 4.4 Consider e ∈ 𝑆̂𝑆 with (ae)𝑆̂𝑆 = a𝑆̂𝑆 for 
each a ∈ 𝑆̂𝑆. Thus the subsequent assertions are 
equivalent. 

(1) 𝑆̂𝑆 is regular 

(2) 𝑔̂𝑔 = (𝑔̂𝑔 ∘ δ) ∘ 𝑔̂𝑔 for any MPFGB-ideal 𝑔̂𝑔 over 
𝑆̂𝑆. 

(3) 𝑔̂𝑔 = (𝑔̂𝑔 ∘ δ) ∘ 𝑔̂𝑔 for each MPFB-ideal 𝑔̂𝑔 over 
𝑆̂𝑆. 

Proof. (1) ⇒ (2): Consider 𝑔̂𝑔 = (𝑔̂𝑔₁,𝑔̂𝑔₂,...,𝑔̂𝑔m) be a 
MPFGB-ideal over 𝑆̂𝑆. Let a ∈ 𝑆̂𝑆 , so by assertion 
(1), a = (ax)a for some x ∈ 𝑆̂𝑆. So, we get 

   ((𝑔̂𝑔n ∘ δn) ∘ 𝑔̂𝑔n)(a) 

   = ⋁a=𝑦𝑦𝑦𝑦{(𝑔̂𝑔n ∘ δn)(y) ∧ 𝑔̂𝑔n(z)} for some y, z ∈ 𝑆̂𝑆 

   ≥ (𝑔̂𝑔n ∘ δn)(ax) ∧ 𝑔̂𝑔n(a) since a = (ax)a 

   = ⋁ax=𝑝𝑝𝑝𝑝{𝑔̂𝑔n(p) ∧ δn(q)} ∧ 𝑔̂𝑔n(a) 

   ≥ {𝑔̂𝑔n(a) ∧ δn(x)} ∧ 𝑔̂𝑔n(a) 

   = 𝑔̂𝑔n(a) for all n ∈ {1,2,...,m}. 

Hence proved that (𝑐𝑐∘ δ) ∘ 𝑔̂𝑔 ≥ 𝑔̂𝑔. 

Because 𝑔̂𝑔 is a MPFGB-ideal over 𝑆̂𝑆. Thus, we 
get   

((𝑔̂𝑔n ∘ δn) ∘ 𝑔̂𝑔n)(a)  

= ⋁a=𝑦𝑦𝑦𝑦{(𝑔̂𝑔n ∘ δn)(y) ∧ 𝑔̂𝑔n (z)} for some y,z ∈ 𝑆̂𝑆  
= ⋁a=𝑦𝑦𝑦𝑦{⋁y=𝑝𝑝𝑝𝑝{𝑔̂𝑔n(p)∧ δn(q)} ∧ 𝑔̂𝑔n(z)} for p,q ∈ 
𝑆̂𝑆 
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= ⋁a=𝑦𝑦𝑦𝑦{⋁y=𝑝𝑝𝑝𝑝{𝑔̂𝑔n(p) ∧ 𝑔̂𝑔n(z)}} 

≤ ⋁a=𝑦𝑦𝑦𝑦{⋁y=𝑝𝑝𝑝𝑝{𝑔̂𝑔n((pq)z)}} 

= ⋁a=𝑦𝑦𝑦𝑦{𝑔̂𝑔n(yz)} 

= 𝑔̂𝑔n(a) for all n ∈ {1,2,...,m}. 

So, (𝑔̂𝑔 ∘ δ) ∘ 𝑔̂𝑔 ≤ 𝑔̂𝑔. Thus 𝑔̂𝑔 = (𝑔̂𝑔 ∘ δ) ∘ 𝑔̂𝑔 . 

(2) ⇒ (3): It is straightforward.   

(3) ⇒ (1): Consider 𝐽𝐽 be any quasi-ideal over 𝑆̂𝑆. 
Since (𝐽𝐽𝑆̂𝑆)𝐽𝐽 ⊆ (𝐽𝐽𝑆̂𝑆) 𝑆̂𝑆 = (𝐽𝐽𝑆̂𝑆)(e𝑆̂𝑆) = (𝐽𝐽e)( 𝑆̂𝑆𝑆̂𝑆) = (𝐽𝐽e)𝑆̂𝑆 
= 𝐽𝐽𝑆̂𝑆 and (𝐽𝐽𝑆̂𝑆)𝐽𝐽 ⊆ (𝑆̂𝑆𝑆̂𝑆)𝐽𝐽 = 𝑆̂𝑆𝐽𝐽. Therefore (𝐽𝐽𝑆̂𝑆)𝐽𝐽 ⊆ 𝐽𝐽𝑆̂𝑆 
∩ 𝑆̂𝑆𝐽𝐽 ⊆ 𝐽𝐽. 

Now, let a ∈ 𝐽𝐽 such that a = yz for some y, z ∈ 𝑆̂𝑆. 
Since by Lemma 3.9, 𝐶̂𝐶𝑗̂𝑗 is a MPFQ-ideal over 𝑆̂𝑆. 
Therefore 𝐶̂𝐶𝑗̂𝑗 is an MPFB-ideal over 𝑆̂𝑆 by 
Theorem 4.2. Thus, we get 

((𝐶̂𝐶𝑗̂𝑗 ∘ δ) ∘ 𝐶̂𝐶𝑗̂𝑗)(a) = 𝐶̂𝐶𝑗̂𝑗(a) by using condition (3) 

              = (1,1,...,1) 

Hence ((𝐶̂𝐶𝑗̂𝑗 ∘ δ) ∘ 𝐶̂𝐶𝑗̂𝑗)(a) = (1,1,...,1). So, there are 
elements u, v ∈ 𝑆̂𝑆 so that (𝐶̂𝐶𝑗̂𝑗 ∘ δ)(u) = (1,1,...,1) 
and 𝐶̂𝐶𝑗̂𝑗(v) = (1,1,...,1) with a = uv. Since (𝐶̂𝐶𝑗̂𝑗 ∘ δ)(u) 
= (1,1,...,1). So there are elements w, e ∈ 𝑆̂𝑆  such 
that 𝐶̂𝐶𝑗̂𝑗(w) = (1,1,...,1) and δ(e) = (1,1,...,1) with u 
= we. Thus w, v ∈ 𝐽𝐽 and e ∈ 𝑆̂𝑆 and so a = uv = 
(we)v ∈ (𝐽𝐽𝑆̂𝑆)𝐽𝐽. Hence 𝐽𝐽 ⊆ (𝐽𝐽𝑆̂𝑆)𝐽𝐽. So, 𝐽𝐽 = (𝐽𝐽𝑆̂𝑆)𝐽𝐽. 
Thus 𝑆̂𝑆 is regular from Theorem 4.1. 

Theorem 4.5 Consider e ∈ 𝑆̂𝑆 with (ae)𝑆̂𝑆 = a𝑆̂𝑆 for 
each a ∈ 𝑆̂𝑆. Thus the subsequent statements are 
equivalent. 

(1) 𝑆̂𝑆 is regular 

(2) Consider any MPFR-ideal 𝑔̂𝑔, any MPFGB-
ideal ℎ̂, and any MPFL-ideal 𝐼𝐼 over 𝑆̂𝑆, this 

(𝑔̂𝑔 ∘ ℎ̂) ∘ 𝐼𝐼 ≥ (𝑔̂𝑔 ∧ ℎ̂) ∧ 𝐼𝐼 holds. 

(3) Consider any MPFR-ideal 𝑔̂𝑔, any MPFB-ideal 
ℎ̂, and any MPFL-ideal 𝐼𝐼 over 𝑆̂𝑆, this  

(𝑔̂𝑔 ∘ ℎ̂) ∘ 𝐼𝐼 ≥ (𝑔̂𝑔 ∧ ℎ̂) ∧ 𝐼𝐼 holds. 

 (4) Consider any MPFR-ideal 𝑔̂𝑔, any MPFQ-
ideal ℎ̂, and any MPFL-ideal 𝐼𝐼 of 𝑆̂𝑆, this 

(𝑔̂𝑔 ∘ ℎ̂) ∘ 𝐼𝐼 ≥ (𝑔̂𝑔 ∧ ℎ̂) ∧ 𝐼𝐼 holds. 

Proof. (1) ⇒ (2): Consider 𝑔̂𝑔 = (𝑔̂𝑔₁,𝑔̂𝑔₂,...,𝑔̂𝑔m), ℎ̂ = 
(ℎ̂₁,ℎ̂₂,...,ℎ̂m), and 𝐼𝐼 = (𝐼𝐼₁,𝐼𝐼₂,...,𝐼𝐼m) be any MPFR-

ideal, MPFGB-ideal and MPFL-ideal 𝐼𝐼 over 𝑆̂𝑆, 
respectively. Suppose that a ∈ 𝑆̂𝑆, so by  assertion 
(1) a = (ar)a for some r ∈ 𝑆̂𝑆. It follows that, a = 
(ar)a = (ar)(ea) = (ae)(ra) = a(ra) since (ae)𝑆̂𝑆 = a𝑆̂𝑆 
for each a ∈ 𝑆̂𝑆. Hence we get 

((𝑔̂𝑔 ∘ ℎ̂) ∘ 𝐼𝐼)(a)  = ⋁a=𝑢𝑢𝑢𝑢{(𝑔̂𝑔 ∘ ℎ̂)(u) ∧ 𝐼𝐼(v)} 

            ≥ (𝑔̂𝑔 ∘ h)(a) ∧ 𝐼𝐼(ra) as a = a(ra) 

            ≥ ⋁a=𝑝𝑝𝑝𝑝{𝑔̂𝑔(p) ∧ ℎ̂(q)} ∧ 𝐼𝐼(a)  

            ≥ (𝑔̂𝑔(ar)∧ℎ̂(a)) ∧ 𝐼𝐼(a) as a = (ar)a 

            ≥ (𝑔̂𝑔(a) ∧ ℎ̂(a)) ∧ 𝐼𝐼(a) 

            = ((𝑔̂𝑔 ∧ ℎ̂)(a)) ∧ 𝐼𝐼(a) 

            = ((𝑔̂𝑔 ∧ ℎ̂) ∧ 𝐼𝐼)(a) 

Hence proved that (𝑔̂𝑔 ∘ ℎ̂) ∘ 𝐼𝐼 ≥ (𝑔̂𝑔 ∧ ℎ̂) ∧ 𝐼𝐼. 

(2) ⇒ (3) ⇒ (4): These are straight forward. 

(4) ⇒ (1): Consider 𝑔̂𝑔 = (𝑔̂𝑔₁,𝑔̂𝑔₂,...,𝑔̂𝑔m) and 𝐼𝐼 = 
(𝐼𝐼₁,𝐼𝐼₂,...,𝐼𝐼m) be any MPFR-ideal and MPFL-ideal 
over 𝑆̂𝑆. As δ be a MPFQ-ideal over 𝑆̂𝑆, by the 
supposition, we get 

(𝑔̂𝑔 ∧ 𝐼𝐼)(a) = ((𝑔̂𝑔 ∧ δ) ∧ 𝐼𝐼)(a) 

   ≤ ((𝑔̂𝑔 ∘ δ) ∘ 𝐼𝐼)(a) 

   = ⋁a=𝑝𝑝𝑝𝑝{(𝑔̂𝑔 ∘ δ)(p) ∧ 𝐼𝐼 (q)} 

   = ⋁a=𝑝𝑝𝑝𝑝{(⋁p=𝑢𝑢𝑢𝑢{𝑔̂𝑔(u)∧δ(v)}) ∧ 𝐼𝐼(q)} 

   = ⋁a=𝑝𝑝𝑝𝑝{(⋁p=𝑢𝑢𝑢𝑢{𝑔̂𝑔(u) ∧ 1}) ∧ 𝐼𝐼(q)} 

                = ⋁a=𝑝𝑝𝑝𝑝{(⋁p=𝑢𝑢𝑢𝑢𝑔̂𝑔(u)) ∧ 𝐼𝐼(q)} 

   ≤ ⋁a=𝑝𝑝𝑝𝑝{(⋁p=𝑢𝑢𝑢𝑢{𝑔̂𝑔(uv)}) ∧ 𝐼𝐼(q)} 

   = ⋁a=𝑝𝑝𝑝𝑝{𝑔̂𝑔(p) ∧ 𝐼𝐼(q)} 

   = (𝑔̂𝑔 ∘ 𝐼𝐼)(a) 

Thus (𝑔̂𝑔 ∘ 𝐼𝐼) ≥ (𝑔̂𝑔 ∧ 𝐼𝐼) for any MPFR-ideal 𝑔̂𝑔 and 
any MPFL-ideal 𝐼𝐼 over 𝑆̂𝑆. But (𝑔̂𝑔∘𝐼𝐼) ≤ (𝑔̂𝑔∧𝐼𝐼). This 
gives (𝑔̂𝑔 ∘ 𝐼𝐼) = (𝑔̂𝑔 ∧ 𝐼𝐼). Thus 𝑆̂𝑆 is regular by 
Theorem 4.3. 

5. CONCLUSION 

In this research paper, we have put forward the 
idea of MPF-sets which is an expansion of BPF-
sets. Infact, the BPF-sets are useful mathematical 
model to demonstrate the positivity and 
negativity of goods. In this study we have 
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= ⋁a=𝑦𝑦𝑦𝑦{⋁y=𝑝𝑝𝑝𝑝{𝑔̂𝑔n(p) ∧ 𝑔̂𝑔n(z)}} 

≤ ⋁a=𝑦𝑦𝑦𝑦{⋁y=𝑝𝑝𝑝𝑝{𝑔̂𝑔n((pq)z)}} 

= ⋁a=𝑦𝑦𝑦𝑦{𝑔̂𝑔n(yz)} 

= 𝑔̂𝑔n(a) for all n ∈ {1,2,...,m}. 

So, (𝑔̂𝑔 ∘ δ) ∘ 𝑔̂𝑔 ≤ 𝑔̂𝑔. Thus 𝑔̂𝑔 = (𝑔̂𝑔 ∘ δ) ∘ 𝑔̂𝑔 . 

(2) ⇒ (3): It is straightforward.   

(3) ⇒ (1): Consider 𝐽𝐽 be any quasi-ideal over 𝑆̂𝑆. 
Since (𝐽𝐽𝑆̂𝑆)𝐽𝐽 ⊆ (𝐽𝐽𝑆̂𝑆) 𝑆̂𝑆 = (𝐽𝐽𝑆̂𝑆)(e𝑆̂𝑆) = (𝐽𝐽e)( 𝑆̂𝑆𝑆̂𝑆) = (𝐽𝐽e)𝑆̂𝑆 
= 𝐽𝐽𝑆̂𝑆 and (𝐽𝐽𝑆̂𝑆)𝐽𝐽 ⊆ (𝑆̂𝑆𝑆̂𝑆)𝐽𝐽 = 𝑆̂𝑆𝐽𝐽. Therefore (𝐽𝐽𝑆̂𝑆)𝐽𝐽 ⊆ 𝐽𝐽𝑆̂𝑆 
∩ 𝑆̂𝑆𝐽𝐽 ⊆ 𝐽𝐽. 

Now, let a ∈ 𝐽𝐽 such that a = yz for some y, z ∈ 𝑆̂𝑆. 
Since by Lemma 3.9, 𝐶̂𝐶𝑗̂𝑗 is a MPFQ-ideal over 𝑆̂𝑆. 
Therefore 𝐶̂𝐶𝑗̂𝑗 is an MPFB-ideal over 𝑆̂𝑆 by 
Theorem 4.2. Thus, we get 

((𝐶̂𝐶𝑗̂𝑗 ∘ δ) ∘ 𝐶̂𝐶𝑗̂𝑗)(a) = 𝐶̂𝐶𝑗̂𝑗(a) by using condition (3) 

              = (1,1,...,1) 

Hence ((𝐶̂𝐶𝑗̂𝑗 ∘ δ) ∘ 𝐶̂𝐶𝑗̂𝑗)(a) = (1,1,...,1). So, there are 
elements u, v ∈ 𝑆̂𝑆 so that (𝐶̂𝐶𝑗̂𝑗 ∘ δ)(u) = (1,1,...,1) 
and 𝐶̂𝐶𝑗̂𝑗(v) = (1,1,...,1) with a = uv. Since (𝐶̂𝐶𝑗̂𝑗 ∘ δ)(u) 
= (1,1,...,1). So there are elements w, e ∈ 𝑆̂𝑆  such 
that 𝐶̂𝐶𝑗̂𝑗(w) = (1,1,...,1) and δ(e) = (1,1,...,1) with u 
= we. Thus w, v ∈ 𝐽𝐽 and e ∈ 𝑆̂𝑆 and so a = uv = 
(we)v ∈ (𝐽𝐽𝑆̂𝑆)𝐽𝐽. Hence 𝐽𝐽 ⊆ (𝐽𝐽𝑆̂𝑆)𝐽𝐽. So, 𝐽𝐽 = (𝐽𝐽𝑆̂𝑆)𝐽𝐽. 
Thus 𝑆̂𝑆 is regular from Theorem 4.1. 

Theorem 4.5 Consider e ∈ 𝑆̂𝑆 with (ae)𝑆̂𝑆 = a𝑆̂𝑆 for 
each a ∈ 𝑆̂𝑆. Thus the subsequent statements are 
equivalent. 

(1) 𝑆̂𝑆 is regular 

(2) Consider any MPFR-ideal 𝑔̂𝑔, any MPFGB-
ideal ℎ̂, and any MPFL-ideal 𝐼𝐼 over 𝑆̂𝑆, this 

(𝑔̂𝑔 ∘ ℎ̂) ∘ 𝐼𝐼 ≥ (𝑔̂𝑔 ∧ ℎ̂) ∧ 𝐼𝐼 holds. 

(3) Consider any MPFR-ideal 𝑔̂𝑔, any MPFB-ideal 
ℎ̂, and any MPFL-ideal 𝐼𝐼 over 𝑆̂𝑆, this  

(𝑔̂𝑔 ∘ ℎ̂) ∘ 𝐼𝐼 ≥ (𝑔̂𝑔 ∧ ℎ̂) ∧ 𝐼𝐼 holds. 

 (4) Consider any MPFR-ideal 𝑔̂𝑔, any MPFQ-
ideal ℎ̂, and any MPFL-ideal 𝐼𝐼 of 𝑆̂𝑆, this 

(𝑔̂𝑔 ∘ ℎ̂) ∘ 𝐼𝐼 ≥ (𝑔̂𝑔 ∧ ℎ̂) ∧ 𝐼𝐼 holds. 

Proof. (1) ⇒ (2): Consider 𝑔̂𝑔 = (𝑔̂𝑔₁,𝑔̂𝑔₂,...,𝑔̂𝑔m), ℎ̂ = 
(ℎ̂₁,ℎ̂₂,...,ℎ̂m), and 𝐼𝐼 = (𝐼𝐼₁,𝐼𝐼₂,...,𝐼𝐼m) be any MPFR-

ideal, MPFGB-ideal and MPFL-ideal 𝐼𝐼 over 𝑆̂𝑆, 
respectively. Suppose that a ∈ 𝑆̂𝑆, so by  assertion 
(1) a = (ar)a for some r ∈ 𝑆̂𝑆. It follows that, a = 
(ar)a = (ar)(ea) = (ae)(ra) = a(ra) since (ae)𝑆̂𝑆 = a𝑆̂𝑆 
for each a ∈ 𝑆̂𝑆. Hence we get 

((𝑔̂𝑔 ∘ ℎ̂) ∘ 𝐼𝐼)(a)  = ⋁a=𝑢𝑢𝑢𝑢{(𝑔̂𝑔 ∘ ℎ̂)(u) ∧ 𝐼𝐼(v)} 

            ≥ (𝑔̂𝑔 ∘ h)(a) ∧ 𝐼𝐼(ra) as a = a(ra) 

            ≥ ⋁a=𝑝𝑝𝑝𝑝{𝑔̂𝑔(p) ∧ ℎ̂(q)} ∧ 𝐼𝐼(a)  

            ≥ (𝑔̂𝑔(ar)∧ℎ̂(a)) ∧ 𝐼𝐼(a) as a = (ar)a 

            ≥ (𝑔̂𝑔(a) ∧ ℎ̂(a)) ∧ 𝐼𝐼(a) 

            = ((𝑔̂𝑔 ∧ ℎ̂)(a)) ∧ 𝐼𝐼(a) 

            = ((𝑔̂𝑔 ∧ ℎ̂) ∧ 𝐼𝐼)(a) 

Hence proved that (𝑔̂𝑔 ∘ ℎ̂) ∘ 𝐼𝐼 ≥ (𝑔̂𝑔 ∧ ℎ̂) ∧ 𝐼𝐼. 

(2) ⇒ (3) ⇒ (4): These are straight forward. 

(4) ⇒ (1): Consider 𝑔̂𝑔 = (𝑔̂𝑔₁,𝑔̂𝑔₂,...,𝑔̂𝑔m) and 𝐼𝐼 = 
(𝐼𝐼₁,𝐼𝐼₂,...,𝐼𝐼m) be any MPFR-ideal and MPFL-ideal 
over 𝑆̂𝑆. As δ be a MPFQ-ideal over 𝑆̂𝑆, by the 
supposition, we get 

(𝑔̂𝑔 ∧ 𝐼𝐼)(a) = ((𝑔̂𝑔 ∧ δ) ∧ 𝐼𝐼)(a) 

   ≤ ((𝑔̂𝑔 ∘ δ) ∘ 𝐼𝐼)(a) 

   = ⋁a=𝑝𝑝𝑝𝑝{(𝑔̂𝑔 ∘ δ)(p) ∧ 𝐼𝐼 (q)} 

   = ⋁a=𝑝𝑝𝑝𝑝{(⋁p=𝑢𝑢𝑢𝑢{𝑔̂𝑔(u)∧δ(v)}) ∧ 𝐼𝐼(q)} 

   = ⋁a=𝑝𝑝𝑝𝑝{(⋁p=𝑢𝑢𝑢𝑢{𝑔̂𝑔(u) ∧ 1}) ∧ 𝐼𝐼(q)} 

                = ⋁a=𝑝𝑝𝑝𝑝{(⋁p=𝑢𝑢𝑢𝑢𝑔̂𝑔(u)) ∧ 𝐼𝐼(q)} 

   ≤ ⋁a=𝑝𝑝𝑝𝑝{(⋁p=𝑢𝑢𝑢𝑢{𝑔̂𝑔(uv)}) ∧ 𝐼𝐼(q)} 

   = ⋁a=𝑝𝑝𝑝𝑝{𝑔̂𝑔(p) ∧ 𝐼𝐼(q)} 

   = (𝑔̂𝑔 ∘ 𝐼𝐼)(a) 

Thus (𝑔̂𝑔 ∘ 𝐼𝐼) ≥ (𝑔̂𝑔 ∧ 𝐼𝐼) for any MPFR-ideal 𝑔̂𝑔 and 
any MPFL-ideal 𝐼𝐼 over 𝑆̂𝑆. But (𝑔̂𝑔∘𝐼𝐼) ≤ (𝑔̂𝑔∧𝐼𝐼). This 
gives (𝑔̂𝑔 ∘ 𝐼𝐼) = (𝑔̂𝑔 ∧ 𝐼𝐼). Thus 𝑆̂𝑆 is regular by 
Theorem 4.3. 

5. CONCLUSION 

In this research paper, we have put forward the 
idea of MPF-sets which is an expansion of BPF-
sets. Infact, the BPF-sets are useful mathematical 
model to demonstrate the positivity and 
negativity of goods. In this study we have 
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examined the multi-information about the given 
data by defining the multi-polar fuzzy sets in LA-
semigroups. Mainly, we have confined our 
attention to investigate how we can generalize the 
results of BPF-sets in terms of multi-polar fuzzy 
sets. Also detailed exposition of multi-polar 
fuzzy ideals in 𝑆̂𝑆 have been studied. Moreover, 
this study can be used as a design for aggregation 
or classification and to define multi-valued 
relations. One such structure is the Pythagorean 
MPF-set which is hybrid model of both PFS and 
MPF-sets is presented by Naeem et al. [17]. 
Another related model is the Pythagorean MPF-
sets, which was proposed by Riaz et al. [18]. The 
interval [0,1] is the range of a membership 
function, which illustrates a fuzzy set (F-set). A 
membership degree serves as an illustration of 
how individuals of a set are related. 

6. CONFLICT OF INTEREST 

The authors declare no conflict of interest. 

7. REFERENCES 

1. J. Chen, S. Li, S. Ma, and X. Wang. m-Polar 
Fuzzy Sets: An Extension of Bipolar Fuzzy Sets. 
The Scientific World Journal 2014: 416530 
(2014). 

2. D.T. Ho, and J.M. Garibaldi. Context modelling 
in fuzzy systems. Proceedings of the WCCI 2012 
IEEE World Congress on Computational 
Intelligence, Brisbane, Australia 1-7 (2012). 

3. M.A. Nazim, and M. Naseerudin. On almost-
semigroup. The Aligarh Bulletin of Mathematics 
2: 1-7 (1972). 

4. N. Kuroki. Fuzzy bi-ideals in semigroups. 
Commentarii mathematici Universitatis Sancti 
Pauli 27: 17-21 (1979). 

5. K.M. Lee. Bipolar-valued fuzzy sets and their 
operations. Proceedings of the International 
conference on Intelligent Technologies, Bangkok, 
Thailand 307-312 (2000). 

6. K.M. Lee. Comparison of interval-valued fuzzy 
sets, intuitionistic fuzzy sets and bipolar-valued 

fuzzy sets. Journal of Fuzzy Logic and Intelligent 
Systems 14: 125-129 (2004). 

7. N. Malik, and M. Shabir. A consensus model 
based on rough bipolar fuzzy approximations. 
Journal of Intelligent & Fuzzy Systems 36: 3461–
3470 (2019). 

8. J.N. Mordeson, D. S. Malik, and N. Kuroki. Fuzzy 
semigroups. Springer-Verlag, Berlin, Germany 
(2003). 

9. Q. Mushtaq, and S.M. Yusuf. On LA-semigroups. 
The Aligarh Bulletin of Mathematics 8: 65-70 
(1978). 

10. Q. Mushtaq, and S.M. Yusuf. On locally 
associative LA-semigroups. Journal of natural 
sciences and mathematics 19: 57-62 (1979). 

11. P.V. Protic, and N. Stevanovic. The structural 
theorem for AG groupoids. Series Mathematics 
and Informatics 10: 25-33 (1995). 

12. A. Rosenfeld. Fuzzy groups. The Journal of 
Mathematical Analysis and Applications 35: 512-
517 (1971). 

13. L.A. Zadeh. The concept of a linguistic variable 
and its applications to approximate reasoning. 
Information Sciences 8: 199-249 (1975). 

14. L.A. Zadeh. Fuzzy Sets. Information and Control 
8: 338-353 (1965). 

15. R. Zenab. Some Studies in Fuzzy AG Groupoids. 
M. Phil Dissertation, Quaid-i-Azam University, 
Islamabad (2009). 

16. M. Riaz, M. Saba, M. Abdullah, and M. Aslam. 
The novel concepts of m-polar spherical fuzzy 
sets and new correlation measures with 
application to pattern recognition and medical 
diagnosis. AIMS Mathematics 10: 11346-11379 
(2021). 

17. K. Naeem, M. Riaz, and D. Afzal. Pythagorean m-
polar fuzzy sets and TOPSIS method for the 
selection of advertisement mode. Journal of 
Intelligent & Fuzzy Systems 37: 8441–8458 
(2019). 

18. M. Riaz, K. Naeem, and D. Afzal. Pythagorean m-
polar fuzzy soft sets with TOPSIS method for 
MCGDM. Punjab University Journal of 
Mathematics 52: 21–46 (2020). 

 

	 Some Studies of Multi-Polar Fuzzy Ideals in LA-Semigroups 	 67


