Physicochemical Properties of Soil as Affected by Land Use Change in a Tropical Forest Ecosystem of Northeastern Bangladesh

Physicochemical properties of soil as affected by land use change

  • Md. Habibur Rahman Laboratory of Tropical Forest Resources & Environments, Division of Forest & Biomaterials Science, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan; Bangladesh Institute of Social Research Trust, Lalmatia, Dhaka, Bangladesh
  • Md. Bahauddin Department of Narcotics, District Narcotics Control Office, Jashore, Bangladesh
Keywords: Physicochemical Properties, Plantation, Deforestation, Soil pH, Land Use Change, Shorea robusta, Dipterocarpus turbinatus

Abstract

Some selected soil physicochemical properties such as nitrogen (N), phosphorus (P), potassium (K), soil
organic carbon (SOC), carbon to nitrogen ratio (C: N), and soil organic matter (SOM) with soil pH have been evaluated
from Shorea robusta and Dipterocarpus turbinatus plantations, and a deforested site, and compared to the surface soil
(0-10 cm) and sub-surface soil (10-30 cm) at Tilagarh Eco-park of northeastern Bangladesh. Total 90 soil samples
were collected from 20m × 20m plot in two soil depths among 30 from each land use and 15 from each soil depth.
The data were analysed statistically through one-way ANOVA test and compared by using DMRT at p ˂ 0.05. The
average of the mean value of soil pH (5.33 ± 0.058) was significantly higher in S. robusta plantation (5.6 ± 0.096) than
D. turbinatus plantation (5.25 ± 0.042). Available K content was significantly higher in S. robusta plantation (62.56
± 0.004 mg kg-1) than D. turbinatus plantation (54.74±0.016 mg kg-1). There was a significant difference between P
content in D. turbinatus (4530 ± 0.319 mg kg-1) and S. robusta (4210 ± 0.088 mg kg-1) plantations. Total N content
was slightly higher in S. robusta plantation (0.11 ± 0.01%) than the D. turbinatus plantation (0.10 ± 0.00%). The mean
value of SOM concentration was higher in S. robusta plantation (1.83 ± 0.180%) than in D. turbinatus plantation
(1.72 ± 0.026%), and SOC concentration was found higher in the D. turbinatus plantation (2.58 ± 0.15%) than in
S. robusta plantation (2.35 ± 0.21%). Finally, the study showed that there was a significant difference in the mean
values of physicochemical properties according to two soil depths and three land uses.

References

1. de la Paix, M.J., L. Lanhai, C. Xi, S. Ahmed & A. Varenyam. Soil degradation and altered flood risk as a consequence of deforestation. Land Degradation
and Development 24: 478-485 (2013).
2. Zhao, G., X. Mu, Z. Wen, F. Wang & P. Gao. Soil erosion, conservation, and eco-environment changes
in the Loess Plateau of China. Land Degradation and
Development 24: 499-510 (2013).
3. Arévalo-Gardini, E., M. Canto, J. Alegre, O. Loli,
A. Julca & V. Baligar. Changes in soil physical and
chemical properties in long term improved natural
and traditional agroforestry management systems of
Table 5. One-way ANOVA analysis of soil physicochemical properties according to soil depths and land uses
Soil macronutrients Soil depth Land use and land cover
F P F P
Soil pH 18.800 0.000 12.885 0.001
Available K 15.733 0.000 2.803 0.092
Available P 866.705 0.000 1.462 0.263
Total N 46.714 0.000 20.960 0.000
SOM 2891.729 0.000 63.744 0.000
80 M. Habibur Rahman and M. Bahauddin
cacao genotypes in Peruvian Amazon. PLoS ONE
10(7): e0132147 (2015).
4. Liu, S.L., B.J. Fu, Y.H. Lü & L.D. Chen. Effects of
reforestation and deforestation on soil properties in
humid mountainous areas: A case study in Wolong
Nature Reserve, Sichuan province, China. Soil Use
and Management 18: 376-380 (2002).
5. Seeger, M. & J.B. Ries. Soil degradation and soil
surface process intensities on abandoned fields
in Mediterranean mountain environments. Land
Degradation and Development 19: 488-501 (2008).
6. Sala, O.E., F.S. Chapin III, J.J. Armesto, R. Berlow,
J. Bloomfield, R. Dirzo, E. Huber-Sanwald, L.F.
Huenneke, R.B. Jackson, A. Kinzig, R. Leemans,
D. Lodge, H.A. Mooney, M. Oesterheld, N.L. Poff,
M.T. Sykes, B.H. Walker, M. Walker & D.H. Wall.
Global biodiversity scenarios for the year 2100.
Science 287: 1770-1774 (2000).
7. Tian, Q., T. Taniguchi, W.Y. Shi, G. Li, N. Yamanaka
& S. Du. Land-use types and soil chemical properties
influence soil microbial communities in the semiarid
Loess Plateau region in China. Scientific Reports 7:
45289 (2017).
8. Hartemink, A.E. Soil Fertility Decline in the Tropics
with Case Studies on Plantations. ISRIC-CABI,
Wallingford, UK (2003).
9. Singh, G., B. Singh, V. Kuppusamy & N. Bala.
Variations in foliage and soil nutrient composition in
Acacia tortilis plantation of different ages in North-
Western Rajasthan. Indian Foresters 128: 514-521
(2002).
10. Schipper, L.A. & G.P. Sparling. Performance of soil
condition indicators across taxonomic groups and
land uses. Soil Science Society of America Journal
64: 300-311 (2000).
11. Birang, A.M., S. Hauser, L. Brussaard & L. Norgrove.
Earthworm surface-casting activity on slash-andburn
cropped land and in undisturbed Chromolaena
odorata and young forest fallow in south Cameroon.
Pedobiologia 47: 811-818 (2003).
12. Lal, R. Deforestation and land-use effects on soil
degradation and rehabilitation in Western Nigeria.
I. Soil physical and hydrological properties. Land
Degradation and Development 7: 19-45 (1996).
13. Tripler, C.E., S.S. Kaushal, G.E. Likens & M.T.
Walter. Patterns in potassium dynamics in forest
ecosystems. Ecology Letters 9: 451-466 (2006).
14. Li, Y., S.L. Niu & G.R. Yu. Aggravated phosphorus
limitation on biomass production under increasing
nitrogen loading: A meta-analysis. Global Change
Biology 22: 934-943 (2016).
15. Hajabbasi, M.A., A. Jalalinat & H.R. Karizdadeh.
Deforestation effects on soil physical and chemical
properties, Lordegan, Iran. Plant and Soil 190: 301-
307 (1997).
16. Jensen, T.L. Soil pH and the Availability of Plant
Nutrients. International Plant Nutrition Institute
(IPNI), Fall 2010, No. 2. Georgia, USA (2010).
17. Brady, N.C. &R. R. Weil. The Nature and Properties
of Soils, 13th ed. Pearson Education, New Jersey,
USA (2002).
18. McCauley, A., C. Jones &J. Jacobsen. Nutrient
Management Module No. 8. Montana State
University, Montana, USA (2009).
19. Liu, Z.P., M.A. Shao & Y.Q. Wang. Spatial patterns
of soil total nitrogen and soil total phosphorus across
the entire Loess Plateau region of China. Geoderma
197-198: 67-78 (2013).
20. Tang, X., M. Xia, F. Guan, C. Pérez-Cruzado,F.
Guan& S. Fan. Spatial distribution of soil nitrogen,
phosphorus and potassium stocks in Moso Bamboo
Forests in Subtropical China. Scientific Reports
volume 7, Article number: 42640 (2017).
21. Malhi, Y., T.R. Baker, O.L. Phillips, S. Almeida, E.
Alvarez, L. Arroyo, J. Chave, C.I. Czimczik, A.D.
Fiore, N. Higuchi, T.J. Killeen, S.G. Lauranceh,
W.F. Laurance, S.L. Lewis, L.M.M. Montoya,
A.M. Agudo, D.A. Neill, P.N. Vargas, S. Patino,
N.C.A. Pitman, C.A. Quesada, R. Salomao, J.N.M.
Silva, A.T. Lezama, R.V. Martinez, J. Terborgh, V.
Barbara & L. Jon. The above-ground coarse wood
productivity of 104 Neotropical forest plots. Global
Change Biology 10: 563-591 (2004).
22. Paoli, G.D. & L.M. Curran. Soil nutrients limit
aboveground productivity in mature lowland tropical
forests of Southwestern Borneo. Ecosystems 10: 503-
518 (2007).
23. Mercado, L.M., S. Patiño, T.F. Domingues, N.M.
Fyllas, G.P. Weedon, S. Sitch, C.A. Quesada, O.L.
Phillips, L.E.O.C. Aragão, Y. Malhi, A.J. Dolman,
N. Restrepo-Coupe, S.R. Saleska, T.R. Baker, S.
Almeida, N. Higuchi & J. Lloyd. Variations in
Amazon forest productivity correlated with foliar
nutrients and modelled rates of photosynthetic
carbon supply. Philosophical Transactions of the
Royal Society 366: 3316-3329 (2011).
24. Peñuelas, J., J. Sardans, A. Rivas & I.A. Janssens.
The human induced imbalance between C, N and P in
earth’s life-system. Global Change Biology 18: 3-6
(2012).
25. Wieder, W.R., C.C. Cleveland, W.K. Smith & K.
Todd-Brown. Future productivity and carbon storage limited by terrestrial nutrient availability. Nature
Geoscience 8: 441-444 (2015).
26. Cleveland, C.C., A.R. Townsend, P. Taylor, S.
Alvarez-Clare, M.M. Bustamante, G. Chuyong, S.Z.
Dobrowski, P. Grierson, K.E. Harms, B.Z. Houlton,
A. Marklein, W. Parton, S. Porder, S.C. Reed, C.A.
Sierra, W.L. Silver, E.V. Tanner & W.R. Wieder.
Relationships among net primary productivity,
nutrients and climate in tropical rain forest: A pantropical
analysis. Ecology Letters 14(9): 939-947
(2011).
27. BFD. 2008. Forest Land. Bangladesh Forest
Department, Ministry of Environment and Forest:
Dhaka. Available online at: http://www.bforest.gov.
bd.
28. Rahman, M.H., M. Rahman, M.M. Islam & M.S.
Reza. The importance of forests to protect medicinal
plants: A case study of Khadimnagar National Park,
Bangladesh. International Journal of Biodiversity
Science Ecosystem Services and Management 7(4):
283-294 (2011).
29. Rahman, M.H., M.J. Fardusi, B. Roy, M.M.
Kamal, M.J. Uddin & M.A.S.A. Khan. Production,
economics, employment generation and marketing
pattern of rattan-based cottage enterprises: a case
study from an urban area of north-eastern Bangladesh.
Small-scale Forestry 11:207-221 (2012).
30. Rahman, M.H., M.A.S.A. Khan, B. Roy & M.J.
Fardusi. Assessment of natural regeneration status
and diversity of tree species in the biodiversity
conservation areas of northeastern Bangladesh.
Journal of Forestry Research 22(4): 551-559 (2011).
31. Roy, B., M.H. Rahman & M.J. Fardusi. Impact of
banana based agroforestry on degraded Sal forest
(Shorea robusta C.F. Gaertn) of Bangladesh: A
study from Madhupur National Park. Journal of
Biodiversity and Ecological Sciences 2(1): 62-72
(2012).
32. Rahman, M.H., B. Roy, S.I. Anik & M.J. Fardusi.
Ecotourism and protected area conservation in
Bangladesh: a case study on understanding the
visitors views on prospects and development. Journal
of Forest Science 29(1): 15-28 (2013).
33. FAO. Global Forest Resources Assessment 2015.
Food and Agriculture Organization of the United
Nations, Rome, Italy (2015).
34. Rahman, M.H. & Miah, M.D. Are protected forests of
Bangladesh prepared to implementation of REDD+?
a forest governance analysis. Environments 4(2): 43,
doi:10.3390/environments4020043 (2017).
35. Roy, B., M.H. Rahman & M.J. Fardusi. Status,
diversity, and traditional uses of homestead gardens
in northern Bangladesh: A means of sustainable
biodiversity conservation. ISRN Biodiversity doi:
http://dx.doi.org/10.1155/2013/124103 (2013).
36. Banglapedia. 2015. Forest Soil. Available online at:
http://en.banglapedia.org/index.php?title=Forest_
Soil.
37. Hossain, M.Z., M.A.A. Khan, M.A. Kashem & S.
Hoque. Plant community composition in relation to
soil physico‐chemical properties of the Ratargul
Swamp Forest, Bangladesh. Dhaka University
Journal of Biological Sciences 25(1): 1‐8 (2016).
38. Rahman, M.H., M. Bahauddin, M.A.S.A. Khan, M.J.
Islam &M.B. Uddin. Assessment of soil physical
properties under plantation and deforested sites in
a biodiversity conservation area of north-eastern
Bangladesh. International Journal of Environmental
Sciences 3(3): 1079-1088 (2012).
39. Banglapedia. 2014. Ecopark. Available online at:http://
en.banglapedia.org/index.php?title=Ecopark.
40. AOAC International. Official Methods of Analysis.
Association of Official Analytical Chemists,
Arlington, VA, USA (1995).
41. Nelson, D.W. & L.E. Sommers. Total carbon, organic
carbon and organic matter. Methods of Soil Analysis:
Part 3-Chemical Methods. Sparks, D.L., A.L. Page,
P.A. Helmke, R.H. Loeppert, P.N. Soltanpour, M.A.
Tabatabai, C.T. Johnston & M.E. Sumner (Ed.),
SSSA Book Series, Soil Science Society of America,
Madison, WI, USA, p. 995-996 (1996).
42. Petersen, L. Analytical Methods-Soil, Water, Plant
materials and Fertilizer. Soil Resources Management
and Analytical Services. Soil Resource Development
Institute, Dhaka, Bangladesh (2002).
43. Ball, D.F. Loss on ignition as an estimate organic
matter and organic carbon in non-calcareous soil.
Journal of Soil Science 15: 84-92 (1964).
44. Brady, C.N. & R.R. Weil. The Nature and Properties
of Soils. 12th edition. Prentice Hall, Englewood Cliffs,
New Jersey, USA (1999).
45. Duncan, D.B. Multiple ranges and multiple F-tests.
Biometrics 11: 1-42 (1955).
46. Zaman, M.A., K.T. Osman & S.M.S. Haque.
Comparative study of some soil properties in forested
and deforested areas in Cox’s Bazar and Rangamati
Districts, Bangladesh. Journal of Forestry Research
21(3): 319-322 (2010).
47. Haque, S.M.S. & N.C. Karmakar. Organic matter
accumulation in hill forests of Chittagong region,
Bangladesh. Journal of Forestry Research 20(3):
249-253 (2009).
48. Haque, S.M.S., S.D. Gupta & S. Miah. Deforestation
effects on biological and other important soil
properties in an upland watershed of Bangladesh.
Journal of Forestry Research 25(4): 877-885 (2014).
49. Biswas, S., M.E. Swanson, J.U.M. Shoaib & S.M.S.
Haque. Soil chemical properties under modern
and traditional farming systems at Khagrachari,
Chittagong Hill Tracts, Bangladesh. Journal of
Forestry Research 21(4): 451-456 (2010).
50. Gafur, A., O.K. Borggaard, J.R. Jensen & L.
Petersen. Changes in soil nutrient content under
shifting cultivation in the Chittagong Hill tracts of
Bangladesh. Danish Journal of Geography 100: 37-
46 (2000).
51. Osman, K.S., M. Jashimuddin, S.M.S. Haque & S.
Miah. Effect of shifting cultivation on soil physical
and chemical properties in Bandarban hill district,
Bangladesh. Journal of Forestry Research 24(4):
791−795 (2013).
52. Akhtaruzzaman, M., M.E. Haque & K.T. Osman.
Morphological, physical and chemical characteristics
of hill forest soils at Chittagong University,
Bangladesh. Open Journal of Soil Science 4: 26-35
(2014).
53. Akhtaruzzaman, M., K.T. Osman & S.M.S. Haque.
Properties of Soils under Different Land Uses in
Chittagong Region, Bangladesh. Journal of Forest
and Environmental Science31(1): 14-23 (2015).
54. Binkley, D. & R.R. Fisher. Ecology and Management
of Forest Soils, 4th ed. Wiley-Blackwell, New Jersey,
USA (2012).
55. Biswas, A., M. Alamgir, S.M.S. Haque & K.T.
Osman. Study on soils under shifting cultivation and
other land use categories in Chittagong Hill Tracts,
Bangladesh. Journal of Forestry Research 23(2):
261-265 (2012).
56. Akbar, M.H., O.H. Ahmed, A.S. Jamaluddin,
N.M.N.A. Majid NM, H. Abdul-Hamid, S. Jusop,
A. Hassan, K.H. Yusof & A. Arifin. Differences in
soil physical and chemical properties of rehabilitated
and secondary forests. American Journal of Applied
Sciences 7: 1200-1209 (2010).
57. Lang, F., J. Bauhus, E. Frossard, E. George, K.
Kaiser, M. Kaupenjohann, J. Kru¨ger, E. Matzner,
A. Polle, J. Prietzel, H. Rennenberg & N. Wellbrock.
Phosphorus in forest ecosystems: New insights from
an ecosystem nutrition perspective. Journal of Plant
Nutrition and Soil Science 179: 129-135 (2016).
58. Elser, J.J. & E. Bennett. Phosphorus cycle: a broken
biogeochemical cycle. Nature 478: 29-31 (2011).
59. Zhang, C., H.Q. Tian, J.Y. Liu, S.Q. Wang, M.L.
Liu, S. Pan & X. Shi. Pools and distributions of soil
phosphorus in China. Global Biogeochemical Cycles
19(1): GB1020 (2005).
60. Lloyd, J., M.I. Bird, E. Veenendaal & B. Kruijt.
Should phosphorus availability be constraining
moist tropical forest responses to increasing
CO2concentrations? Global Biogeochemical Cycles
in the Climate System. Schulze, E.D., M. Heimann,
S. Harrison, E. Holland, J. Lloyd, I.C. Prentice and
D. Schimel (Ed.), Academic Press, San Diego, CA,
USA, p. 96-114 (2001).
61. Mia, M.N., M.K. Hasan & K.K. Islam. Geochemical
analysis of forest floor leaf litters of Madhupur Sal
forest of Bangladesh. Fundamentaland Applied
Agriculture 1(1): 23-27 (2016).
62. Marty, C., D. Houle, C. Gagnon & F. Courchesne. The
relationships of soil total nitrogen concentrations,
pools and C:N ratios with climate, vegetation types
and nitrate deposition in temperate and boreal forests
of eastern Canada. Catena 152: 163-172 (2017).
63. Shaifullah, K.M., M. Mezbahuddin, M. Sujauddin
& S.M.S. Haque. Effects of coastal afforestation
on some soil properties in Lakshmipur coast of
Bangladesh. Journal of Forestry Research 19(1): 32-
36 (2008).
64. Bot, A. & J. Benites. The Importance of Soil Organic
Matter: Key to Drought-resistant Soil and Sustained
Food and Production. FAO Soils Bulletin 80. Food
and Agriculture Organization of the United Nations,
Rome, Italy (2005).
65. Rosoman, G. The Plantation Effect, an Ecoforestry
Review of the Environmental Effects of Exotic
Monoculture Tree Plantations in Aotearoa/New
Zealand. Greenpeace, Auckland, New Zealand
(1994).
66. Hofle, S., J. Rethemeyer, C.W. Mueller & S. John.
Organic matter composition and stabilization in a
polygonal tundra. Biogeosciences 10: 3145-3158
(2013).
67. BARC. Fertilizer Recommendation Guide-2012.
Bangladesh Agricultural Research Council, Dhaka,
Bangladesh (2012).
68. Huq, S.M.I. & J.U.M. Shoaib. The Soils of
Bangladesh. Springer, Dodrecht, the Netherlands
(2013).
69. FAO. Soil Organic Carbon: The Hidden Potential.
Food and Agriculture Organization of the United
Nations, Rome, Italy (2017).
70. Osman, K.T., M.M. Rahaman & S. Sikder. Growth and
nutrition of some forest tree species in Bangladesh.
Annals of Forests 10(2): 214-227 (2002).
71. Luo, Y.Q., C.B. Field & R.B. Jackson. Does nitrogen
constrain carbon cycling, or does carbon input
stimulate nitrogen cycling? Ecology 87: 3-4 (2006).
72. Yang, Y., Y. Luo & A.C. Finzi. Carbon and nitrogen
dynamics during forest stand development: a global
synthesis. New Phytologist 190: 977-989 (2011).
73. Pritchett, W.L.& R.F. Fisher. Properties and
Management of Forest Soils, 2nded. John Wiley &
Sons, New York, USA (1987).
Published
2019-11-08
How to Cite
Rahman, M. H., & Md. Bahauddin. (2019). Physicochemical Properties of Soil as Affected by Land Use Change in a Tropical Forest Ecosystem of Northeastern Bangladesh: Physicochemical properties of soil as affected by land use change. Proceedings of the Pakistan Academy of Sciences: B. Life and Environmental Sciences, 55(4), 71–84. Retrieved from http://ppaspk.org/index.php/PPASB/article/view/31
Section
Articles