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Abstract: The marvels of DNA recombination technology have revolutionized the field of biotechnology. Several 
hormones, antibody subunits, vaccines, enzymes, and interferons are being produced at the industrial level, in suitable 
expression systems, under optimized conditions. For recombinant protein production, a range of expression systems 
are available such as bacteria, yeast, fungi, plant cells, insects and animal cells, etc. All recombinant proteins are 
naturally different from each other and various challenges are kept into consideration while choosing an expression 
system for their production. Every expression system has its advantages and limitations on the basis of which it 
can be considered or rejected for a particular protein production. Therefore, it is very significant to investigate the 
potential and limitations of several expression systems to choose the suitable one for particular protein production at an 
industrial scale. The optimization criteria of an expression system is evaluated on several factors such as productivity, 
efficiency, physiological characteristics, total cost, safety, convenience, and down-streaming conditions. Escherichia 
coli and Saccharomyces cerevisiae remained the organisms of choice to produce recombinant proteins for a long time, 
but now several other microorganisms are also being targeted to evaluate their efficiency toward recombinant protein 
production. Prokaryotic expression systems can be used to produce eukaryotic proteins as well however, the use of 
a eukaryotic expression system is preferable because it retains the structural, functional, and regulatory properties 
of therapeutic proteins. This review illustrates a brief view of a variety of expression systems, their efficiency, and 
limitations in recombinant protein production. 
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1. INTRODUCTION

Proteins are the basic biological building blocks 
which play a key role in the metabolic machinery 
of all life forms. Some proteins perform structural 
roles while others act as biocatalysts i.e., enzymes 
which accelerate the metabolic rate. Proteins are 
the most vital biological molecules that play a key 
role in almost every function of the cell such as 
immune responses, cell adhesion, cell signaling, 
and cell cycle [1]. These biological molecules can 
now be produced at a commercial scale, all thanks 
to recombinant DNA technology. Recombinant 
DNA (rDNA) technology refers to the genetic 
manipulation in an organism’s genetic material to 
induce desired characteristics in the organism or 
to produce desired products i.e., proteins. It was 
in 1973 when the first recombinant DNA molecule 

was produced at the University of California San 
Francisco and Stanford University by the combined 
efforts of Paul Berg, Herbert Boyer, Annie Chang, 
and Stanley Cohen [2]. 

At first rDNA technology was suggested to 
foster agriculture and drug development, however, 
several unexpected difficulties hinder the achieving 
satisfactory results [2]. Till 1980 several products 
i.e., vaccines, hormones, and therapeutic proteins 
had been developed. The first ever developed 
therapeutic recombinant protein was insulin which 
was approved as safe in 1982 after which it became 
one of the global scale pharmaceutical products 
with a continuously increasing demand worldwide 
[2-4]. Besides the pharmaceutical sector, enzyme 
and agriculture industries also take benefit from 
recombinant DNA technology [4].
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At present, several genetically engineered 
proteins are produced at an industrial scale. These 
proteins are used in different sectors i.e., enzyme 
industries, pharmaceutical industries, agriculture 
industries, etc. The products manufactured in these 
industries act as raw materials for many other fields 
such as diagnostics, medicine, nutrition, pharmacy, 
detergent, paper pulp, textiles, plastics, leather, and 
polymers [1, 5]. The development and innovation 
in recombinant DNA technology have evolved the 
strategy of treatment. Figure 1 demonstrates some 
key advantages of DNA technology in diagnostics, 
treatment, and improvement of the health quality of 
people. According to the Vantage Market Research 
report, the value of the global recombinant DNA 
technology market remained at 142.9 Billion USD 
and is expected to surpass 223 Billion USD by 
2018 [6]. 

  To fulfill the required need of production, 
various expression systems have been established 
[7]. Expression system refers to the host cell, 
providing the metabolic machinery for protein 
synthesis, and a transfected or modified DNA 
vector, responsible for providing the blueprints 
of the desired protein. The genetic code of vector 
DNA is transcripted into mRNA which interacts 
with host ribosomes and results in the translation 
of desired amino acid sequence. During the process 
of translation, transfer RNA and ribosomal RNA 

also play their key roles of supplying amino acids 
and catalyzing the linkages between amino acids 
respectively. 

Translation of protein is followed by the 
addition of protospacer adjacent motifs (PTMs) 
in the molecules which are complex and different 
for prokaryotes and eukaryotes [8]. Prokaryotic 
expression systems can be used to produce 
eukaryotic proteins as well [9]; however, the use of a 
eukaryotic expression system is preferable because 
it retains the structural, functional, and regulatory 
properties of therapeutic proteins [10, 11]. 

The present review illustrates the recently 
available variety of expression systems for the 
production of beneficial recombinant proteins. 
Moreover, a comparison of the efficiency and 
benefits of these expression systems along with 
their potential to produce recombinant proteins at 
an industrial scale will also be discussed in this 
review.

2.    CONSIDERATIONS TO CHOOSE AN 
EXPRESSION SYSTEM 

Choosing the right expression system to express the 
protein of interest is an extremely vital approach as 
it affects the outcomes. There are several factors to 
be considered to choose an expression system: the 
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origin of the protein (prokaryotic or eukaryotic); 
solubility of the protein (insoluble proteins may 
form aggregates in the form of inclusion bodies or 
do not fold accurately); structural complexity, post-
transnational modifications, cellular localization, 
purification, yield and the total investment to 
produce the protein at commercial scale [12]. 
Every protein is different and requires different 
expression systems for proper recovery. Mostly, 
the recombinant proteins produced in an expression 
system behave foreign for it, hence the post-
translational modifications could be different from 
the original product. Almost 5 % of the whole 
cell proteome consists of enzymes which perform 
several post-translational modifications which are 
different for genetically different types of cells 
[13]. It indicates that even if the host cell has a 
capability of a specific post-translation modification 
such as glycosylation, still there is a possibility 
of a difference in the pattern of glycosylation 
compared to the native protein. To retain the 
stability, immunogenicity, biological activity, and 
pharmacokinetic behavior of a therapeutic protein, 
its N-linked glycosylation pattern should be correct 
[14]. Some general considerations and requirements 
for the proficient production of recombinant protein 
are described in Figure 2. 

2.1 Overview of Recombinant Proteins 
Production 

Genetic manipulation involves the insertion of a 
specific DNA fragment, containing the gene of 
interest, in an appropriate vector. This process is 
facilitated by the enzymatic activity of two most 
important enzymes: endonucleases (for sequence-
specific DNA cutting activity) and DNA ligases (to 
attach the gene of interest with the vector). The vector 
is further inserted into an expression system, grown 
to produce several copies of the gene of interest to 
produce desirable products [15] as demonstrated 
in Figure 3. There is a diversity of available 
expression system platforms for recombinant 
protein production. Different expression systems 
such as bacteria, yeast, mammalian cells, plants, 
and insects could be used. Among these expression 
systems, bacterial (Escherichia coli) and yeast 
expression systems (Saccharomyces cerevisiae and 
Pichia pastoris) are more common [16-17].

3.   BACTERIA

Bacteria are simple unicellular prokaryotes which 
proves beneficial protein-producing cell factories. 
Bacteria are considered an easily available 
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expression system because of certain key factors. 
The selection of a prokaryotic bacterial expression 
system is considered an attractive choice because 
of its low expense cost, medium productivity, and 
rapid growth of bacteria [17]. Most widely used 
bacterial expression system has been described as 
follows:

3.1  Escherichia coli  

The most widely used bacteria for recombinant 
protein production is the gram-negative rod, E. coli 
because of its certain significant characteristics i.e., 
its short replication time and extremely fast growth 
kinetics enable fast achievement of high cell 
densities. The reagents and culture media required 
to grow E. coli are quite simple and inexpensive. 
The genetic manipulation and transformation of                                                   
E. coli are comparatively simple and straightforward 
due to its genetics, biochemistry, and metabolism 
[17, 18]. It is comparatively easy to manipulate the 
genetic information of E. coli as compared to other 
bacterial expression systems such as Streptomyces 
and Pseudomonas system [17]. Besides this, 
therapeutic protein production in E. coli eliminates 
the requirement of optimization step as various 
standard plasmids can be employed easily. Usually, 
E. coli is used with T7 bacteriophage RNA 
polymerase. Moreover, it is now considered the 

most appropriate approach to start the recombinant 
protein production process [9]. In 1982, the first 
biopharmaceutical product, approved by Food 
and Drug Administration (FDA) was biosynthetic 
insulin, engineered in an E. coli expression system 
[19]. Now a days, the E. coli expression system is 
widely used for several other therapeutic product 
productions such as tumor necrosis factor, human 
growth hormone, interleukins etc. [20, 21]. E. coli 
with a T7 RNApol expression system is best suitable 
for the production of non-glycosylated proteins.                    
E. coli is still under research to gain more and more 
understanding regarding its central dogma and 
post-translation modifications. E. coli is the most 
suitable expression system because it can tolerate 
a range of environmental conditions and can store 
the recombinant proteins in almost 80 % of its dry 
mass [1]. Figure 4 illustrates the possible strain 
improvement strategies for E. coli.

3.2  Lactic Acid Bacteria
 
Lactic acid bacteria (LAB), the gram-positive 
non-sporulating anaerobic rods, have long been 
used in multiple dairy fermentation processes 
as recombinant microbial cell factories. Among 
the other genera of LAB, Lactococcus and 
Lactobacillus are most commonly employed either 
as cell vectors to deliver therapeutic molecules or 
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as producer cells [20]. Lactococcus lactis is one of 
the most promising LAB for recombinant protein 
production. Different Lactobacillus strains such 
as L. reuteri, L. gasseri, and L. Plantram are used 
for the production of green fluorescent proteins, 
and enzymes such as beta-glucuronidase, beta-
galactosidase, and aminopeptidase. Being safe 
and non-pathogenic, LABS have been declared a 
Generally Recognized as Safe (GRAS) organism 
by the food and Drug Administration (FDA) 
[22]. LABs do not contain exotoxins in their cell 
membrane hence providing an endo-toxin-free 
expression system. Other key characteristics of 
LAB that makes them attractive expression systems 
include easily scale-able, cheap, safe for food, and 
production of heterologous membrane proteins. 
Novel genetic manipulation techniques such as 
CRISPR-Cas9 has also been used to transform 
LAB for the production of several therapeutic 
proteins [23]. LAB has a potential economic impact 
on the fermentation industry because it is used as an 
expression system for the production of lactic acid, 
milk products, wine, meat, high-grade metabolites, 
and antimicrobial peptides [24].

3.3  Pseudoalteromonas haloplanktis

One of the fastest growing and eligible expression 
system psychrophile is P. haloplanktis TAC125 
which was isolated from a seawater sample from 

an Antarctic coast. It is characterized as gram-
negative bacteria which has the ability to grow at 
low temperatures (0–30 °C). The eligibility of P. 
haloplanktis for an expression system has also been 
improved by certain genetic modifications [10]. 
Antibody fragment production has been reported 
by using a cold-adapted platform instead of the 
conventional mesophilic platform which usually 
uses E. coli [25, 26]. Such platforms have also 
proved very beneficial for the production of some 
delicate and heat-sensitive proteins such as alpha-
glucosidase and Human Nerve Growth Factor 
h-NGF [10, 27]. The production of h-NGF in E. coli 
failed as the h-NGF accumulated in inclusion bodies 
instead of folding accurately. In contrast, h-NGF 
folded in a proper dimeric form remained soluble 
and translocated in periplasm when expressed in 
P. haloplanktis TAC125 [10]. Similarly, alpha-
glucosidase, a recombinant enzyme of S. cerevisiae 
was recovered efficiently in a soluble and active 
form from P. haloplanktis TAC125 as compared to 
that of E. coli in which alpha-glucosidase became 
insoluble [27].
 
3.4  Pseudomonas 

Pseudomonas can grow rapidly and secrete protein 
efficiently. Different Pseudomonas species i.e., 
P. aeruginosa, P. fluorescens, and P. putida have 
shown the best protein yield and efficient expression 
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as compared to E. coli and hence can be used as the 
best alternative to E. coli for certain proteins [9].

3.4.1 Pseudomonas putida

Pseudomonas putida (strain KT2440) is a gram-
negative soil bacterium which is widely used in 
a cell factory to produce industrially important 
proteins because of its extraordinary features. 
These features include versatile metabolism, 
rapid growth, minimal nutrient requirements, 
and tolerance to stress conditions. The extensive 
biochemical network of P. putida facilitates 
extensive  production of NADPH instead of ATP. 
This property enables it to tolerate stress conditions 
[28]. 

3.4.2 Pseudomonas fluorescens

 A proprietary expression system of P. fluorescens 
has been developed for the efficient production 
of recombinant proteins. This system is more 
advantageous as compared to conventional                             
E. coli.  Protein production in P. fluorescens can be 
carried out even in depleted oxygen concentration 
and it also prevents the accumulation of acetate in 
the expression system. However, it shares some 
characteristics with E. coli such as growing ability 
in saturated cell density (N100 g/L) and over-
expression of proteins i.e., half of the total protein 
[136].  P. fluorescens fermentation does need strict 
control of glucose concentration and aeration 
passage. The highest production rate of nitrilase, 
a recombinant enzyme, has been reported as                                                                                                             
25 g L−1 using P. fluorescens as an expression system. 
Moreover, the P. fluorescens expression system 
proved advantageous for an insecticidal protein 
with a yield of 3–4 gL−1 which is comparatively 
very high as compared to that of E. coli i.e., 100 mg 
L−1 [9, 29]. 

3.5  Other bacteria

With the advancement in research and technology, 
many other bacterial expression systems have 
emerged as successful alternatives. One of the most 
noteworthy bacterial systems is the gram-positive 
bacteria Streptomyces which has an efficient 
secretory system. It secretes a high concentration 
of the desired proteins in the medium which 
reduces some recovery steps [9].  Another choice of 
expression system is Ralstonia.

4.   FUNGI

Filamentous fungi have been used as commercial 
organisms to produce pharmaceutical and 
enzymatic products. The versatile metabolic ability 
of fungi makes it an attractive and outstanding 
cell factory. Fungi also have the ability to express 
several prokaryotic as well as lower eukaryotic 
genes after genetic manipulation. Filamentous 
fungi have a strong capacity for secretion due to 
which they are also considered one of the most 
promising expression systems for recombinant 
protein production. However, there are a few 
fungal species (Aspergillus sp. and Trichoderma 
sp.) that are used to produce a competitive level of 
recombinant protein at an industrial scale [27]. 

4.1  Aspergillus 

Aspergillus is one of the most extensively studied 
genera from a research perspective. Its species 
are considered model organisms i.e., A. nidulans. 
Other species i.e., A. oryzae and A. niger have 
great importance in citric acid production even 
at the industrial scale [33]. Several molecular 
genome editing tools such as RNA interference-
RNAi, selection markers, and CRISPR/Cas9 are 
also being used to manipulate the Aspergillus sp. 
genome to get the desired level of protein of interest                                                                                            
[34, 35]. A. niger genome has been successfully 
edited using CRISPR/Cas9 which incorporate 
double-strand breaks in the DNA sequence. 
Moreover, this technology is also being used for 
other Aspergillus sp. Being considered as GRAS, 
the genetically modified A. niger has been employed 
at an industrial scale to produce very significant 
proteins i.e., human lactoferrin, calf chymosin, and 
neoculin, a plant-derived sweetener [36-42]   The 
yield of all these proteins have been increased by 
optimizing the physiological growth conditions of 
the fungi.

4.2  Trichoderma reesei

Another important fungus is T. reesei which also 
contains an extraordinary secretory system. Its 
genome can be modified by aggressive mutations 
to produce extracellular cellulase.  A yield of                   
100 g/L cellulase production was reported by                    
T. reesei of which 60 % was characterized as Cel7a 
(CBHI) while 20 % was Cel 6a (CBHII) [43]. 
Initially, T.reesei was exploited for the production 
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of calf chymosin [44, 45] later on it was reported 
to efficiently produce antibody fragments [46]. The 
higher extent of recombinant protein production 
was attributed to the taxonomic relatedness of the 
gene of interest and the host. Trichoderma is used 
to produce recombinant cellulase by incorporating 
its genes into cassettes [43, 47]. Usually, Cel 7a 
(CBHI) single peptide is responsible to mediate the 
high secretion level of this protein [48].

4.3  Other fungi

There is comparatively less information regarding 
the gene sequencing of filamentous fungi other than 
Aspergillus and Trichoderma specie. However, 
Pectinases, hemicellulases, and cellulases are 
reported to be produced by several Penicillium 
species such as P. emersonii, P. funiculosum, and 
P. purpurogenum respectively [43]. Another fungal 
system (N. crassa), reported to grow at a maximum 
rate in normal media, has been genetically and 
biochemically characterized. It has the potential to 
produce and secrete proteins at a higher level. Its 
genome size is 40Mb, of which there are 10,000 
protein-coding genes. Most of these genes are 
responsible for secondary metabolite production 
in Neurospora [43, 49]. Now a days, N. crassa has 
been adopted as an expression system to produce 
vaccine subunits such as neuraminidase antigens 
(NA) and influenza hemagglutinin (HA) [50]. 
Recently, many fungal strains i.e., T. reesei, N. 
crassa, and Aspergillus species are being used in 
the production of antibodies [51-53].  

5.   YEAST

Yeast, unicellular microorganisms having the ability 
to process proteins like eukaryotes i.e., assembly, 
folding, and post-translational modifications, has 
always remained an organism of interest to be used 
as an expression system. Due to easy manipulation 
in genes and efficient growth rates, yeast cells are 
beneficial hosts.  Moreover, it does not possess 
any oncogenes or endotoxins. Saccharomyces 
cerevisiae has been used to express the majority 
of recombinant proteins since 1980 [61]. Food 
and Drug Administration (FDA) has declared                                 
S. cerevisiae as GRAS (generally regarded as safe). 
But there is one problem and that is yeast is not 
good for large-scale productions because it requires 
efficient machinery for its fermentation. Moreover, 
products produced by S. cerevisiae mostly remain 

in periplasmic spaces due to hyperglycosylation 
[62, 63]. These products start degrading after some 
time and it is very hectic to remove them from our 
desired product. These drawbacks led to the quest 
for new species of yeasts for another expression 
system, most of these efforts were made by using 
nonconventional Yeasts such as Pichia pastoris, 
Hansenula polymorpha, Sarcoscypha occidentalis, 
Pichia methanolica, Zygosaccharomyces rouxii, 
Candida boidinii, and Kluyveromyces lactis, etc. 
[55, 64-66].

5.1  Saccharomyces cerevisiae

For almost the last thirty years, S. cerevisiae, 
a eukaryotic microorganism, has been used to 
express different recombinant proteins [67].                                        
S. cerevisiae was used to express the recombinant 
form of the first vaccine i.e., Hepatitis B and it was 
produced intracellularly. S. cerevisiae also comes 
in the first row when approval for any recombinant 
therapeutics is required from FDA and EMEA, 
recombinant therapeutics produced from it always 
get green signals from these agencies [68]. Hirudin, 
Platelet-derived growth factors, Hepa-B surface 
antigen, insulin, and GM-CSF (Granulocyte 
macrophage-colony-stimulating factors) are some 
of the main products of S. cerevisiae which are 
currently available in the market for use [6].

5.2  Pichia pastoris 

P. pastoris is a methylophilic yeast because it has 
the ability to use methanol to fulfill its requirement 
of carbon in the absence of any other carbon 
alternative [69]. P. pastoris has a strong tendency to 
secrete protein even if they have a high molecular 
weight. This characteristic makes them better 
than S. cerevisiae in which heavy proteins retain 
in the periplasm. Moreover, it is comparatively 
easy to purify the secreted proteins from the 
extracellular medium. The strains of P. pastoris i.e., 
protease deficient strains (SMD1163, SMD1165, 
SMD1168) and Auxotrophic mutant (GS115) are 
commonly used and are derived from wild type 
NRRL-Y 11430 strain. P. pastoris strains have also 
been characterized on the basis of their ability to 
utilize methanol i.e., Mut+, MutS, and Mut- [70]. 
A therapeutic polypeptide of 60 amino acids was 
produced by P. pastoris. It was further approved 
as safe by Food and Drug Administration FDA in 
2009 to treat hereditary angioedema. A Comparison 
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of the yield of some recombinant protein products 
produced by bacteria and other expression systems 
is given in Table 1.

5.3  Kluyveromyces lactis 

Since the 1950s, the production of β-galactosidase 
(also known as lactase), as well as the heterologous 
appearance of rennin (bovine chymosin) is done 
by using K. lactis [9]. Many features of K. latis 
played their role in its popularity for the production 
of r-protein. Some of these features are as follows, 
LAC4 which plays the role of such a powerful 
inducible promoter. This promoter is regulated by 
even low amounts of glucose. It also has the ability 
to use whey as well as lactose-like cheap substrates. 
For its approval as a GRAS strain and its ability to 
produce proteins with high molecular weights [39], 
a complete sequence of its genome [67], as well as a 
kit for protein expression is commercially available 
from NEB [47].  Previous literature about K. lactis 
is mostly about the MATα CBS 2359 mating strain 
and GG799 haploid strain which is a wild-type 
strain that is known as a good host as it is added in 
the commercially available kit.

5.4  Yarrowia lipolytica 

For expressing the heterologous proteins, the use of 
Y. lipolytica expression system is getting popularity 
due to the following reasons; i) a large amount of 
proteins with high molecular weight is secreted 

due to its inherent ability; ii) pathway named 
as co-translational translocation is analogous to 
eukaryotes and could be the reason for the secretion 
of proteins [76]. This system of protein secretion 
is exactly opposite to the pathway named as post-
translational translocation and is mostly present 
in S. cerevisiae; iii) sugar is not fermented by this 
organism, iv) completely sequenced genome is 
available [69, 77]; v) fermentation with high density 
is possible; and vi) many GRAS processes on the 
industrial level are approved by FDA by using this 
organism [69].

5.5  Other yeast 

Hansenula polymorpha expression systems 
which include a hepatitis B recombinant vaccine, 
insulin, phytase, hirudin, and alpha 2a interferon, 
along with food supplements known as lipase as 
well as hexose oxidase having GRAS notification 
by FDA. A dimorphic yeast named as Arxula 
adeninivorans is a temperature-dependent yeast. 
It has the ability to grow as budding cells as 
well as mycelium. A. adeninivorans also has the 
ability for secreting extracellular enzymes during 
cultivation in the surrounding medium. It mostly 
secretes the proteases, glucosidases which include 
xylosidase, cellobiose, pectinases, invertase, acid 
phosphatases, glucoamylase, trehalose, phytase, 
and β-glucosidases. It also releases RNAse [69]. 
A fission yeast named as Schizosaccharomyces    
pombe have the ability to grow as preferential 

Table 1.  Comparison of the yield of some recombinant protein products produced using bacteria and yeast 
expression systems 

Recombinant protein Example of Expression-
system used Highest product yield (g/Lh) Reference 

Interleukin-6 E. coli 7.5mg mL-1 [131] 
P. pastoris 0.28 mg mL-1 [71] 

Riboflavin C. famata 0.11 g L-1 [72] 
B. subtilis 0.33 g L-1 [1] 
A. gossypii 0.07 g L-1 [132] 

C. ammoniagenes 0.21 g L-1 [54] 
Glutamic acid 
decarboxylase 

S. cerevisiae 0.46 mg mL-1 [131, 73] 
E.coli 12.5 mg mL-1 [71] 

P. pastoris 0.42 mg mL-1 [73] 
Spodoptera frugiperda 

cells 
0.02 mg mL-1 [71] 

Insulin S. cerevisiae 0.075 g L-1 [71] 
E. coli 4.34 g L-1 [1] 

B. subtilis 1 g L-1 [74] 
P. pastoris 3.07 g L-1 [75] 

5.4 Yarrowia lipolytica  

For expressing the heterologous proteins, the use 
Y. lipolytica expression system is getting 
popularity due to the following reasons i) a large 
amount of proteins with high molecular weight is 
secreted due to its inherent ability ii) pathway 
named as co-translational translocation is 
analogous to eukaryotes and could be the reason 
for the secretion of proteins [76]. This system of 
protein secretion is exactly opposite to the 
pathway named as post-translational 
translocation and is mostly present in S. 
cerevisiae, iii) sugar is not fermented by this 
organism iv) completely sequenced genome is 
available [69, 77]. v) fermentation with high 
density is possible and vii) many GRAS 
processes on the industrial level are approved by 
FDA by using this organism [69]. 

5.5. Other yeast 

Hansenula polymorpha expression systems 
which include a hepatitis B recombinant vaccine, 
insulin, phytase, hirudin, and alpha 2a interferon, 
along with food supplements known as lipase as 
well as hexose oxidase having GRAS notification 
by FDA. A dimorphic yeast named as Arxula 
adeninivorans is a temperature-dependent yeast. 
It has the ability to grow as budding cells as well 

as mycelium. A. adeninivorans also has the 
ability for secreting extracellular enzymes during 
cultivation in the surrounding medium. It mostly 
secretes the proteases, glucosidases which 
include xylosidase, cellobiose, pectinases, 
invertase, acid phosphatases, glucoamylase, 
trehalose, phytase, and β-glucosidases. It also 
releases RNAse [69]. A fission yeast named as 
Schizosaccharomyces pombe have the ability to 
grow as preferential haploids. Having a complete 
genome sequenced eukaryotic list it is numbered 
at 6 [78]. Having a complete availability of 
proteome in Swiss Prot as well as UniProtKB it 
is numbered at 3 in the eukaryotic list following 
Homo sapiens and then S. cerevisiae. For 
expressing the mammalian proteins S. pombe is 
considered an eye-catching host and a great area 
of research [79, 80]. A brief list of 
microorganisms that have applications in 
recombinant protein production are listed in 
Table 2.  

6. PLANTS 

With the discovery of growth hormones in 
tobacco plants the production of recombinant 
proteins by using plant expression machinery 
came into existence. In today’s world, three types 
of methods are used for the production of 
recombinant proteins: by forming transgenic 

Table 1.  Comparison of the yield of some recombinant protein products produced using bacteria and yeast expression 
systems
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haploids. Having a complete genome sequenced 
eukaryotic list it is numbered at 6 [78]. Having a 
complete availability of proteome in Swiss Prot 
as well as UniProtKB it is numbered at 3 in the 
eukaryotic list following Homo sapiens and then 
S. cerevisiae. For expressing the mammalian 
proteins S. pombe is considered an eye-catching 
host and a great area of research [79, 80]. A brief 
list of microorganisms that have applications 
in recombinant protein production are listed in                                                        
Table 2. 

6.   PLANTS

With the discovery of growth hormones in tobacco 
plants the production of recombinant proteins 
by using plant expression machinery came into 
existence. In today’s world, three types of methods 
are used for the production of recombinant 
proteins: by forming transgenic plants, by using 
systems relying upon plant-tissue, and by using cell 
cultures. Bacterial infection and viral infection are 
used for the transformation methodology. Some 
direct methods such as biolistic bombardment 
and PEG-mediated technique can also be used for 
transformation methodology [17].

Therapeutic recombinant protein production 
is done by using plant expression systems and the 
main focus is to enhance the quantity and efficiency 
of produced recombinant proteins [81, 82]. The 

main features of plants for their use as recombinant 
proteins producer are as follows: growth conditions 
are cheap, the manufacturing procedures are well 
understood, scalability levels are very high, their 
high ability for the production of complex proteins, 
the infrastructure of the already existing industry, 
the ability for the rapid production, less chances of 
contamination with human pathogens [83].

By using plant sources for the production of 
recombinant biopharmaceuticals the production can 
be increased and costs can be decreased. The plant 
factories producing recombinant proteins possess 
the following qualities mentioned in the literature: 
safety, insensitivity to changes in temperature as 
well as pH, low cost, metabolites presence, high 
stability, easy and cheap storage of produced 
drugs, and ability to produce proteins named as 
N-glycosylated [130]. The most important feature 
of using transgenic plants is that high production 
is maintained by investing low costs while 
compared with other expressions of prokaryotic as 
well as eukaryotic systems it costs lower up to 50 
percent [84, 130]. Hypothetically arguing the plant 
fruits, seeds and leaves might be a rich source of 
therapeutic proteins. The transgenic plants used for 
the production of recombinant proteins show an 
expression ranging from 0.001 % to 46.1 % [85]. 
The ability of transgenic plants to store recombinant 
proteins in cell compartments as well as the plant 
organs makes them different from the other plant 

plants, by using systems relying upon plat-tissue, 
and by using cell cultures. Bacterial infection and 
viral infection are used for the transformation 
methodology. Some direct methods such as 

biolistic bombardment and PEG-mediated 
technique can also be used for transformation 
methodology [17].

  

Table 2. Bacterial, fungal, and yeast strains used in recombinant proteins production 

Expression 
systems Strains used 

 
Reference 

 

E.coli E.coli ArcticExpress, E.coli BL21, E.coli BL21-Codonplus (RIL), 
E.coli  M15, E.coli  Lemo21(DE3), E.coli  C43(DE3) 

[22]  

Yeast Z. bailii, C. famata, H. polymorpha, P. methanolica, P. pastoris,           
P. stipites, K. lactis, Z. rouxii, S. occidentalis, S. cerevisiae,  
Y. lipolytica, C. boidinii 

[54, 55]  

Aspergillus A. awamori, A. terreus, A. niger, A. sojae, A. nidulans, A. oryzae [43, 53, 56, 57]  
Bacillus  B. subtilis KL03, B. subtilis 168, B. megaterium MS941,                            

B. licheniformis BL10GS, B. subtilis 1A751P7, B. subtilis IH6622,                   
B. subtilis BNA, B. brevis, B. licheniformis. 

[1, 58]  

Pseudomonas P. fluorescens, P. putida,  
P. aeruginosa 

[1, 9]  

Streptomyces Streptomyces lividans [1, 22, 9]  
Corynebacterium C. glutamicum, C. ammoniagenes,  [9]  
Trichoderma T. reesei, T. altroviride and T. vireus [43, 59]  
Rhizopus Rhizopus oryzae [43]  
Fusarium F. graminearum [43, 60]    
Ralstonia Ralstonia eutropha [1]   

Therapeutic recombinant protein production is 
done by using plant expression systems and the 
main focus is to enhance the quantity and 
efficiency of produced recombinant proteins [81, 
82]. The main features of plants for their use as 
recombinant proteins producer are as follows: 
growth conditions are cheap, the manufacturing 
procedures are well understood, scalability levels 
are very high, their high ability for the production 
of complex proteins, the infrastructure of the 
already existing industry, the ability for the rapid 
production, less chances for the contamination of 
human pathogens [83]. 

By using plant sources for the production of 
recombinant biopharmaceuticals the production 
can be increased and costs can be decreased. The 
plant factories producing recombinant proteins 
possess the following qualities mentioned in the 
literature: safety, insensitivity to changes in 
temperature as well as pH, low cost, metabolites 
presence, high stability, easy and cheap storage 
of produced drugs, and ability to produce 

proteins named as N-glycosylated [130]. The 
most important feature of using transgenic plants 
is that high production is maintained by investing 
low costs while compared with other expressions 
of prokaryotic as well as eukaryotic systems it 
costs lower up to 50 percent [84, 130]. 
Hypothetically arguing the plant fruits, seeds and 
leaves might be a rich source of therapeutic 
proteins. The transgenic plants used for the 
production of recombinant proteins show an 
expression ranging from 0.001 % to 46.1 % [85]. 
The ability of transgenic plants to store 
recombinant proteins in cell compartments as 
well as the plant organs makes them different 
from the other plant systems [86, 87]. 

6.1 Production of PR proteins by using plant 
species 

6.1.1 Tobacco 

Recombinant protein production on the 
laboratory level is mainly done by using Tobacco 
plants. The Tobacco plant plays a very important 

Table 2. Bacterial, fungal, and yeast strains used in recombinant proteins production
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systems [86, 87].

6.1  Production of Recombinant Proteins by 
using Plant Species

6.1.1 Tobacco

Recombinant protein production on the laboratory 
level is mainly done by using Tobacco plants. The 
Tobacco plant plays a very important role in the mass 
production of recombinant proteins. The yield with 
Tobacco plants is “more than 100,000 kilograms/
hectare, especially for the close-cropped tobacco” 
[88]. It also has the ability for the fast scaling-up 
process as it can produce large amounts of seeds. 
Some considerations to be kept in mind while 
looking for tobacco plants are as follows: protein 
storage in the aerial parts of the plants especially 
leaves is unstable which may cause product 
degradation. To avoid this degradation, product 
should be extracted as soon as they are expressed, 
alternatively the leaves can be dried or frozen for 
product extraction. Due to the presence of alkaloids 
which are toxic in nature and phenols the tobacco 
plant can also be used for the downstream process. 

6.1.2 Cereals

Cereal seeds act as marvelous storage devices for 
proteins as they are outfitted with storage vesicles 
for protein storage. They are also adhering to an 
intracellular environment with drying conditions 
which helps them to reduce the activity of protease, 
and also helps in reducing the hydrolysis by non-
enzymatic sources. Among all the food crops, the 
highest biomass yield is recorded for Maize [89, 90]. 
Now a days, Maize has been used for the biomass 
production of some recombinant antibodies, avidin 
as well as trypsin [82, 88]. Dry cereals such as wheat 
and rice seeds show high stability for recombinant 
protein storage and that is why they can be stored 
at normal temperatures without a noticeable loss in 
their activity. Due to the self-fertilizing ability of 
rice, the risk of transfer of transgenes to other plants 
have been reduced [82, 91]. 

6.1.3 Legumes 

The worth mentioning legumes are alfalfa, soybean, 
and pea which have been used for the recombinant 
production of therapeutic proteins. Atmospheric 

nitrogen is fixed by the legume plants due to which 
they don’t need the nitrogen in their fertilizers and 
thus leads to the low cultivation cost. The biomass 
yield of leaves is lower than that of Tobacco plants. 
Peas are being used as the expression systems due 
to the high content of proteins in their seeds [88]. 

6.1.4 Fruits and vegetables 

Recombinant proteins especially therapeutic 
proteins are produced by using the vegetables 
and fruit crops such as tomato, lettuce, and most 
importantly potato. One of the main features of this 
system is that the produced proteins could be used 
for oral consumption after minimal processing. 
Conversely, quality maintenance and dose-ranging 
are still the main challenges to be addressed yet [88, 
92, 93].

7.   ANIMALS

Transgenic animals have been developed from cows, 
mice, sheep, goats, and rabbits for recombinant 
protein production as shown in Figure 5. Aquatic 
animals are also being explored for the same reason. 
Human factor IX and AAT (α antitrypsin protein) 
are being produced by the transgenic sheep in milk 
as shown in Figure 6. ß-lactoglobulin and tPA by 
transgenic mice [94]. The amount of recombinant 
proteins produced in animal milk is as follows: anti-
thrombin III is being produced in goat milk around 
14 g/L, α-1-antitrypsin is being produced in sheep 
milk around 35 g/L and α-glucosidase is being 
produced in rabbit milk 8 g/L. For recombinant 
proteins production genes are usually taken from 
human sources. The expression of non-milk foreign 
proteins is very low than milk proteins [95].

Transgenic mice urine is the main source for 
the production of growth hormones for humans. 
The amount produced by the mice is about 0.1 to 
0.5 mg/L [1]. One of the most advent features of 
using the urinary system for recombinant protein 
production is that the animals start to urinate at 
an early age rather they lactate at a specific time 
in their life. About 10,000 L of milk is produced 
by a cow after hormonal treatment as compared 
to the amount of urine which is 6000 L. The main 
disadvantage of recombinant protein production by 
transgenic animals is the amount of time required 
for the estimation of production level. This time is 
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almost 32 months in the case of cows, in mice it is 
3.5 months, in sheep it is 28 months and in pigs, it 
is 15 months [96]. For a cow to keep up, we need 
almost $ 10,000 per year. 

Previously, transgenic animals were being 
used for the production of lymphokines and 
vaccines, but now scientist have shifted their focus 
towards protozoa and are exploring its potential to 
produce important protein products. Transgenic 
trypanosome is far better than transgenic animals for 
the production of heterologous proteins [1]. These 
benefits include i) with the help of homologous 
recombination, precise and stable integration is 
done, ii) the integration can be done on many sites 
due to which the expression from the multiple unit 
complexes can come out, iii) high densities growth 
and easy cells maintenance in the semi-defined 
medium. 

8.   INSECTS

An IC (insect cell) system is working as a solution 
between the two main expression systems which 
are the mammalian system and the bacterial system. 
With the development of BEVS (baculovirus 
expression vector system) recombinant protein 
production is welcomed by the IC platform [15]. 
The development of the IC platform includes 
two steps; first is the multiplication at the desired 
concentration and the second step is the addition 
of baculoviruses for infection purposes, this 
baculovirus also contains GOI [97]. The origin 
of insect cells used for this purpose came from 
Drosophila melanogaster, Autographa californica, 
and Spodoptera frugiperda. These cells are used 
as they are susceptible to baculovirus infection 
[97, 98]. Some other insects can also be used for 
the development of recombinant proteins such as 
tPA (plasminogen activator), hGAD65, parasitic 
proteins as well as viral proteins [17, 97, 98].

8.1 Silkworm

Bombyx mori, a silkworm, produces large quantities 
of silk proteins in its silk glands which can be 
used to form cocoons. Silk proteins are the major 
components of silk and include sericin and fibroin 
proteins majorly [99]. In the case of transgenic 
silkworms, the recombinant proteins are expressed 
in the silk glands. The expression and place of 

the recombinant proteins can be controlled by 
controlling the location of the genes that are able 
to produce the silk proteins. By using PGS (Pre-
implantation genetic screening) we can localize 
the expression of silk proteins in the inner core of 
fibroin. By using MSG (Monosodium glutamate), 
the expression of silk proteins can be localized into 
the outer layer of sericin [99]. Table 3 represents 
the recombinant proteins obtained from different 
types of IC.

9.   MICROALGAE

Microalgae, also known as photosynthetic 
microorganisms, are a diverse group of organisms 
capable of using sunlight to produce proteins, 
carbohydrates, and lipids [112]. They are usually 
considered as unicellular eukaryotes in spite of the 
fact that some cyanobacteria which are prokaryotic 
organisms also referred to as microalgae [113]. 
In recent years, interest has been developed in 
using microalgae for the production of biofuels 
as well as therapeutic proteins [1]. Some species 
of microalgae can be used as a substitute for 
fossil fuels in the biofuel industry due to their 
astonishing oil content [138]. Another reason 
for their biotechnical focus might be due to their 
ability to act as extraordinary bioreactors for the 
production of recombinant proteins on large scale. 
Microalgae exhibit the qualities of both prokaryotic 
and eukaryotic expression systems such as high 
progression rates as well as post-transcriptional 
and translational amendments. A major benefit over 
previously employed expression systems such as 
insect cells, mammalian cell lines, bacteria, and 
yeast is that algae have a phototropic lifestyle, 
making their cultivation CO2-neutral and simply 
requiring relatively minimal expenditures [139]. 
Severe infections can be prevented by the use 
of vaccines but due to their costly production, 
the process of vaccination is highly influenced 
particularly in developing countries. Almost all 
the time, generation of antigen-grounded vaccines 
bearing heterologous expression is simpler than 
the antibody generation procedures. Despite this 
advantage, these antigen vaccines still required 
mammalian cell lines’ expression system for 
their intricate post-translational modifications. In 
addition, they also face high risks of contamination 
by human pathogens. Microalgae have excellent 
opportunities in this regard as they do not serve as 
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hosts for human infections and have rapid growth 
rates. In fact, once the proper bioreactors are in 
place, growing them is relatively inexpensive as 
they only require light and water [140].

9.1  Chlamydomonas reinhardtii

Chlamydomonas reinhardtii, is known as the 
model algae and is mostly used as a model for 
representing the eukaryotic micro-alga. Not only 
for its metabolic and genetic ability but also for 
its rapid reproduction. The sexual cycles are not 
only rapid but they are also controllable [107]. 
Microalgae as an expression system have expressed 
almost 20 recombinant proteins, especially in 
the C. reinhardtii [107]. C. reinhardtii is being 
used extensively because it is stable, and easily 
transformed especially for the transformation of 
mitochondrial organelles, nucleus, and chloroplast, 
quick reproduction of transformants, availability of 

many tool kits at the molecular level, and alternative 
growth of organisms such as heterotrophic growth 
and phototrophic growth. 16-5 % is the rate for the 
expression level of recombinant proteins. Proteins 
developed in chloroplast have higher levels of 
expression than expressed in the nucleus. HSV8 
is the first protein that could be expressed in this 
organism [1].  

9.2  Other algae

Some other algae are also being explored for 
recombinant protein production. With time the 
development of transgenic algae is enhancing. 
Charophyte alga is used for expressing exogenous 
genes [114]. Gonium pectoral which is a volvocine 
alga has a nuclear genome and it is successfully 
transformed [115] as it has the C. Haematococcus 
pluvialis [116, 117] because it is co-cultivated with 
the help of agrobacterium. Chlorarachniophyte 

complexes can come out, iii) high densities 
growth and easy cells maintenance in the semi-
defined medium.  

8. INSECTS 

An IC (insect cell) system is working as a 
solution between the two main expression 
systems which are the mammalian system and the 
bacterial system. With the development of BEVS 
(baculovirus expression vector system) 
recombinant protein production is welcomed by 
the IC platform [15]. The development of the IC 
platform includes two steps first is the 
multiplication at the desired concentration and 
the second step is the addition of baculoviruses 
for infection purposes this baculovirus also 
contains GOI [97]. The origin of insect cells used 
for this purpose came from the Drosophila 
melanogaster, Autographa californica, and 
Spodoptera frugiperda. These cells are used as 
they are susceptible to baculovirus infection [97, 
98]. Some other insects can also be used for the 
development of recombinant proteins such as 
tPA (plasminogen activator), hGAD65, parasitic 
proteins as well as viral proteins [17, 97, 98]. 

8.1 Silkworm 

Bombyx mori a silkworm produced a great 
quantity of silk proteins in its silk glands these 
silk proteins can be used to form cocoons. Silk 
proteins are the major components of silk these 
include sericin and fibroin. These silk proteins 
are synthesized in the silk glands [99]. In the case 
of transgenic silkworms, the recombinant 
proteins are expressed in the silk glands. The 
expression and place of the recombinant proteins 
can be controlled by controlling the location of 
the genes that are able to produce the silk 
proteins. By using PGS (Pre-implantation genetic 
screening) we can localize the expression of silk 
proteins in the inner core of fibroin. By using 
MSG (Monosodium glutamate), the expression 
of silk proteins can be localized into the outer 
layer of sericin [99]. Table 3 represents the 
recombinant proteins obtained from different 
types of IC. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Proteins pharmaceuticals production by the cloning of transgenic animals [138].

 

 

 

Fig. 5. Proteins pharmaceuticals production by the cloning of transgenic animals [138]. 

Table 3. List of recombinant proteins obtained from different IC (insect cells) 

IC (insect cells) of Recombinant proteins References 
• Drosophila melanogaster 
• Autographa californica 
• Spodoptera frugiperda 

• tpA(plasminogen activator) 
• hGAD65 
• Parasitic proteins  
• Viral proteins 

 
[97, 98] 

• Silkworm cocoons 
(Transgenic) 

• Human collagen α chain 
• Human-serum albumin 
• Monoclonal antibody (mouse) 

 
[99, 100, 101] 

9. MICROALGAE 

Microalgae also known as photosynthetic 
microorganisms are a diverse group which also 
able to use sunlight for the production of proteins, 
carbohydrates, and lipids [112]. They are usually 
considered as unicellular eukaryotes in spite of 
the fact that some cyanobacteria which are 
prokaryotic organisms also referred to as 
microalgae [113]. In recent years, interest has 
been developed in using microalgae for the 
production of biofuels as well as therapeutic 
proteins [1]. Some species of microalgae can be 
used as a substitute for fossil fuels in the biofuel 
industry due to their astonishing oil content 
[138]. Another reason for their biotechnical focus 
might be due to their ability to act as 
extraordinary bioreactors for the production of 
recombinant proteins on large scale. Microalgae 
exhibit the qualities of both prokaryotic and 
eukaryotic expression systems such as high 
progression rates as well as post-transcriptional 
and translational amendments. A major benefit 
over previously employed expression systems 
such as insect cells, mammalian cell 
lines, bacteria, and yeast is that algae have a 
phototropic lifestyle, making their cultivation 
CO2-neutral and simply requiring relatively 
minimal expenditures [139]. Severe infections 
need to be prevented by the use of vaccines but 
due to their costly production, the process of 
vaccination is highly influenced particularly in 
developing countries. Almost all of the time, the 
generation of antigen-grounded vaccines 
bearing heterologous expression is simpler than 
the generation of antibodies. Despite this 
advantage, these antigen vaccines still required 
mammalian cell lines expression system for the 
intricate post-translational amendments. In 
addition, they also face high risks of 

contamination by human pathogens. Microalgae 
have excellent opportunities in this regard 
because they do not serve as hosts for human 
infections and combine rapid growth rates with 
most of the benefits comprise by eukaryotic 
expression systems. Once the proper bioreactors 
seem to be in place, growing is relatively 
inexpensive because it mostly requires only light 
and water [140].   

9.1 Chlamydomonas reinhardtii 

Chlamydomonas reinhardtii, is known as the 
model algae and is mostly used as a model for 
representing the eukaryotic micro-alga. Not only 
for its metabolic and genetic ability but also for 
its rapid reproduction. The sexual cycles are not 
only rapid but they are also controllable [107]. 
Microalgae as an expression system have 
expressed almost 20 recombinant proteins, 
especially in the Chlamydomonas reinhardtii 
[107]. Chlamydomonas reinhardtii is being used 
extensively because it is stable, and easily 
transformed especially for the transformation of 
mitochondrial organelles, nucleus, and 
chloroplast, quick reproduction of transformants, 
availability of many tool kits at the molecular 
level, and alternative growth of organisms such 
as heterotrophic growth and phototrophic 
growth. 16-5 % is the rate for the expression level 
of recombinant proteins. Proteins developed in 
chloroplast have higher levels of expression than 
expressed in the nucleus. HSV8 is the first 
protein that could be expressed in this organism 
[1].   

9.2 Other algae 

Some other algae are also being explored for 
recombinant protein production. With time the 
development of transgenic algae is enhancing. 

Table 3. List of recombinant proteins obtained from different IC (insect cells)
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Lotharella amoebiformis which is a marine organism 
is successfully put into the transient transformation 
[118]. Some other successful transformations are 
done by using the Ulva Pertusa chlorophyta alga 
[119]. Cyanidioschyzon merolae also known as the 
red alga is used for successful transformation [120]. 
Dunaliella salina which is a previously known alga 
is also being used for the expression of recombinant 
proteins [121]. The genetics of cyanobacteria has 
also been explored for this purpose. 

10.  MAMMALIAN CELL LINES IN  
USE FOR RECOMBINANT-PROTEIN 
PRODUCTION

Mammalian cell lines offer a range of cell lines 
made from different tissues and support various 
proteins’ growth. These cell lines have all the 
needed machinery for protein expression and 
release. Among many reasons for them being a 
preferred expression system, one reason is their 
ability to synthesize proteins which is closely 
related to proteins present in humans in terms of 
their molecular structure and biochemical properties 
[122]. They are preferably selected when it comes 
to glycosylated protein production as these proteins 
are usually complex [123].

Most of the biopharmaceutical research uses 
two types of mouse cell lines i.e., myeloma cell 
lines (NS0) and hybridoma cell lines (SP2-0) as 
well as two types of hamster cell lines known as 
CHO cell lines (Chinese hamster cell ovary cells 
1) and BHK cell lines (Baby hamster kidney cells) 
[122]. The major reason why these cell lines are 
different from other expression systems is due to 
their ability of N- and O-linked glycosylation as 
proteins that work in glycosylation encodes 2 % of 
the human genome [124]. Nearly all mammalian 
cells have the necessary machinery for recombinant 
protein production, but only a few meet the criteria 
of bioreactors such as mouse myeloma cells NS0, 
CHO, Sp2/0, and BHK. Viral vectors which are 
helpful for gene therapy are usually formed by 
using mammalian cell lines. Many vaccines are 
manufactured by the use of mammalian cell lines 
such as rabies, measles, rubella, and hepatitis A 
[141]. FDA has approved 27 biopharmaceutical 
products and 12 of which are being produced in 
mammalian cells [123].

10.1  Human cell-lines 

In the quest to produce human recombinant proteins, 
the current major focus for biopharmaceutical 
industries is to look for an expression system that 
is not only safe clinically but can also give a high 
yield of proteins [133]. As human cell lines have 
glycosylation machinery, a few powerful human 
lines have emerged as a substitute for human 
recombinant protein production on a commercial 
level [108]. HEK293 is the human cell line currently 
used for the production of different therapeutic 
products such as human-cl, rFVIIIFc, drotrecogen 
alfa, etc. Another human cell line HT-1080 also 
used for the production of pharmaceuticals such 
as Epoetin delta, Agalsidase alfa, and Idursulfase 
[141]. Table 4 represents the recombinant proteins 
produced by different expression systems. 
Further, Table 5 shows the main advantages and 
disadvantages of each type of expression system 
used.

11.  CONCLUSION AND FUTURE 
PERSPECTIVE

A huge extent of therapeutic protein marketing 
comprises of a variety of products such as antibodies, 
vaccine subunits, hormones, and enzymes. In 
order to meet the day-by-day increasing need for 
these therapeutic proteins, DNA recombination 
technology is being used. All recombinant proteins 
are naturally different from each other and various 
challenges are kept into consideration while 
choosing an expression system for their production.
Therefore, it is very significant to investigate the 
potential and limitations of several expression 
systems to choose the suitable one for particular 
protein production at an industrial scale. The 
optimization criteria of an expression system is 
evaluated on several factors such as productivity, 
efficiency, physiological characteristics, total 
cost, safety, convenience, and down-streaming 
conditions. There are certain challenges which are 
associated with recombinant protein production at 
a higher scale i. e., maintaining protein production 
in higher cell densities, separation of cell debris 
from viable cells and product of interest, separation 
of yield without causing cell lysis, downstream 
processing and mass transferring of the products 
[134]. DNA recombinant technology can also 
produce recombinant proteins comparatively 
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better than the native ones by manipulating the 
protein sequence at the genetic level. Therefore, 
recombinant proteins can be adopted in several 
applications such as therapeutics, diagnostics, 
health maintenance, etc. With technological 
advancement, nanotechnology has also been 
adopted with recombinant DNA technology for 
the production of more advantageous and efficient 
recombinant proteins [135].

12.   CONFLICT OF INTEREST

The authors declared no conflict of interest. 

13.   REFERENCES

1.  Y. Gong, H. Hu, Y. Gao, X. Xu, and H. Gao  
Microalgae as platforms for production of 
recombinant proteins and valuable compounds: 
progress and prospects. Journal of Industrial 
Microbiology and Biotechnology  38(12): 1879-

1890 (2011).
2.  S. Khan, M.U. Ullah, R. Siddique, G. Nabi, S. 

Manan, M. Yousaf, and H. Hou. Role of recombinant 
DNA technology to improve life. International 
journal of genomics (2016). 

3. B. Calo-Fernández, and J.L. Martínez-Hurtado. 
Biosimilars: company strategies to capture value 
from the biologics market. Pharmaceuticals 
5(12):1393-1408 (2012).

4. D. Weinacker, C. Rabert, A.B. Zepeda, C.A. 
Figueroa, A. Pessoa, and J.G. Farías. Applications 
of recombinant Pichia pastoris in the healthcare 
industry. Brazilian Journal of Microbiology 44: 
1043-1048 (2013). 

5.  N.K. Tripathi, and A. Shrivastava. Recent 
developments in bioprocessing of recombinant 
proteins: expression hosts and process development. 
Frontiers of Bioengineering and Biotechnology 7: 
420 (2019).

6.  Research Report. Recombinant DNA Technology 
Market Economy Size Expected a Growth of USD 

 

Table 4. List of recombinant proteins produced in different expression systems 

 
Expression system type 
 

Recombinant protein Application Reference 

Insects (Transgenic silkworm 
cocoon) 

Human collagen α chain Biomaterial, DDS, 
therapeutics 

[100] 

Human-serum albumin Therapeutics [101] 
Monoclonal antibody (mouse) Therapeutics, 

diagnostics 
[99] 

Bacteria 
 

Lactic acid 
bacteria (LAB) 

Gamma-aminobutyric acid 
(GABA) 

Anti-hypertensive & 
antidepressant 
activities 

[102] 

P. fluorescens Granulocyte colonystimulating 
factor (G-CSF) 

Drug candidate [103] 

Plants N. benthamiana Protein E envelop from Zika virus Zika virus [104] 
Barley seed 
(Hordeum 
vulgare) 

Human Epidermal Growth factor Burns treatment [17] 

Arabidopsis 
thaliana 

Recombinant human intrinsic 
factor 

Vitamin B12 
defciency 

[84] 

Algae High mobility group protein B1 Therapeutics [105] 

cholera toxin B subunit (CTB-D2) Oral vaccine [106] 
Human metallothionine-2 (hMT-2) Pharmaceutical, UV 

protection 
[107] 

Human 
Cell line 

Hek293 Proteglycan [108, 109] 
Hek293EBNA1 Erythropoietin [110] 
PERC.C6 IgM [111] 

 

Table 4. List of recombinant proteins produced in different expression systems
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