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Abstract: One of the key contributors to antimicrobial resistance is the enzymatic hydrolysis of β-lactam antibiotics 
by β-lactamases, becoming one of the leading public health challenges. In order to overcome this issue, the current 
work utilizes advanced in-silico grid-based molecular docking and post-docking analysis to identify potential 
β-lactamase inhibitors from Coffea arabica beans. Based on past experimental evidence of coffee’s antimicrobial 
activity, this research aimed to explore the inhibitory potential of its bioactive compounds through computational 
modeling to identify natural alternatives to synthetic inhibitors. Seventy-three phytochemicals were then screened and 
molecularly docked by AutoDock against four clinically relevant β-lactamases, namely, AmpC, CTX-M9, CTX-M14, 
and SHV-1, and subsequently subjected to toxicity and ADMET analysis. Among these, tannin, epicatechin, 
quercitrin, and quercetin exhibited the highest binding affinities (-8.5 kcal/mol, -7.7 kcal/mol, -8.6 kcal/mol, and -8.6 
kcal/mol, respectively), outperforming the reference inhibitor, Avibactam. ADMET analysis also revealed favorable 
pharmacokinetic, low toxicity, and oral bioavailability of the top-ranked phytocompounds. Collectively, the results 
indicate the novelty of C. arabica’s phytochemicals as promising natural β-lactamase inhibitors. However, further 
in-vitro and in-vivo studies are required for validating their therapeutic efficacy against resistant bacteria. The current 
study also establishes a framework for integrating computational approaches in phytochemical research to accelerate 
antibacterial drug discovery.
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1.    INTRODUCTION

Antimicrobial resistance (AMR) has become one 
of the most severe threats to global public health, 
resulting in the failure of traditional antibiotic 
therapies [1, 2]. The production of β-lactamases 
(βLs) (enzymes capable of hydrolyzing β-lactam 
antibiotics) represent the most formidable 
challenge, particularly in Gram-negative pathogens 
[3]. Moreover, the continuous and rapid evolution of 
these βLs variants such as SHV-1, TEM-1, AmpC, 
CTX-M, and NDM-1, and NDM-1, has rendered 
many clinically relevant β-Lactams ineffective, 
emphasizing the urgent search for novel inhibitors 
to restore their efficacy [4]. Natural products are 
invaluable sources of bioactive compounds of 
structural complexity and biological specificity 
with a long history of combating infectious diseases 

[5]. Over the last few years, phytochemicals of 
medicinal plants have gained more attention as 
potential adjuvants or alternatives to traditional 
synthetic antibiotics [6]. These phytocompounds 
often have diverse bioactivities (anti-inflammatory, 
antioxidant, antibacterial, and antiviral), which 
makes them promising candidates for developing 
multitarget drug [7]. Plants can produce various 
secondary metabolites or phytochemicals in 
response to environmental stress, such as microbial 
invasion, oxidative stress, high salinity, exposure 
to ultraviolet radiations, drought or elevated 
temperatures [8]. Several phytochemicals have 
shown potential to inhibit βLs, which are bacterial 
enzymes conferring resistance against β-lactam 
antibiotics [9].  Among these natural sources, 
Coffea arabica (C. arabica) is recognized not only 
as a globally consumed beverage crop but also as 



a reserve of structurally diverse phytochemicals, 
including alkaloids, flavonoids, saponins, 
polyphenols, and tannins [10, 11]. C. arabica 
is acknowledged for its abundance of bioactive 
compounds with potent inhibitory action against 
various pathogens [12]. Coffee extract contains 
a variety of bioactive compounds, including 
chlorogenic acid (CGA), catechins, quercetins, 
caffeic acids, tannins, and caffeine with inhibitory 
effects on both Gram-negative and Gram-positive 
bacteria [13]. Antibacterial components in coffee 
can inhibit DNA synthesis and inactivate enzymes 
that are essential to bacterial survival and replication 
[12]. Despite the increasing evidence of its biological 
efficacy, the specific molecular mechanisms 
underlying the antibacterial activities of C. arabica 
remain poorly understood. In particular, the βLs 
inhibitory potential of its phytochemicals has not 
yet been thoroughly explored. Computational 
studies of these natural compounds may, therefore, 
reveal novel scaffolds for βLs inhibition as well as 
provide important insights for future antibacterial 
drug development.

Multi-drug-resistant (MDR) bacteria have 
become a significant global health challenge due 
to their widespread resistance to conventional 
antibiotics [14]. There is an urgent need to 
discover new antimicrobial drugs to address  this 
issue. A promising recent strategy involves the 
use of secondary metabolites of plants. Medicinal 
plants are increasingly recognized as a potential 
alternative treatment for resistant pathogens 
compared to synthetic drugs [15]. Plant-derived 
chemicals possess notable antibacterial properties 
with fewer adverse effects, making them suitable 
candidates for antimicrobial drug development. 
These phytochemicals interact with bacterial 
systems via several mechanisms such as disrupting 
the cell membrane integrity, altering the cell 
permeability, chelating the essential metal ions, 
inhibiting the nucleic acid or protein synthesis, 
and directly binding to key bacterial enzymes 
to block their catalytic activities [16-18]. Thus, 
natural compounds can be utilized successfully to 
inhibit bacterial survival and suppress resistance by 
targeting these mechanisms.

Currently, various advanced bioinformatics 
tools are available to identify the drug-like properties 
of phytochemicals more efficiently than traditional, 
time-consuming experimental procedures [19, 

20]. In-silico molecular docking is a technique 
that analyzes the binding interactions between 
phytochemicals and target enzymes based on binding 
affinities or docking scores. By combining virtual 
screening and pharmacoinformatics, the current 
study aims to investigate the phytochemicals of C. 
arabica for their potential to inhibit βLs, thereby 
enhancing the efficacy of β-lactam antibiotics 
against resistant pathogens. The findings are also 
expected to not only highlight the significant 
role of in-silico modeling in accelerating the 
drug discovery process but also provide potential 
scaffolds capable of counteracting βLs-mediated 
antibiotic resistance.

2.    MATERIALS AND METHODS

2.1. Retrieval of Phytocompounds

The Dr. Duke’s Phytochemical and Ethnobotanical 
Database (https://phytochem.nal.usda.gov/) was 
used to obtain the information about the nature 
and types of various phytochemicals present in C. 
arabica [21, 22]. A total of 73 phytocompounds 
belonging to different classes were screened 
and their 3D structures were downloaded from 
PubChem database (https://pubchem.ncbi.nlm.nih.
gov/) in SDF format. These phytochemicals were 
selected based on their documented abundance, 
chemical diversity as well as previously reported 
bioactivities. The structure of Avibactam was also 
downloaded in SDF format, which was used as 
reference compound for comparative docking.

2.2. Preparation of Ligands

The SDF format of all the ligands (phytochemicals 
as well as Avibactam) was then converted into PDB 
using PyMOL software. Then, all these ligands 
were saved in PDBQT format with the help of 
AutoDock Tools v1.5 [21, 23].

2.3. Retrieval and Preparation of Target 
Enzymes

Four commonly reported βLs, AmpC, SHV-1, 
CTX-M9 and CTX-M14, were selected as target 
enzymes in this study based on their high prevalence 
in increasing β-Lactam resistance in Gram-negative 
pathogens [24, 25]. The 3D structures of these 
enzymes were downloaded from Protein DataBank 
(https://www.rcsb.org/) in PDB format. The PDB 
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IDs of SHV-1, AmpC, CTX-M9 and CTX-M14 βLs 
were 4JPM, 5GZW, 3HLW and 6CYU, respectively. 
The AutoDock tools v1.5.7 were then used to save 
these structures in PDBQT format, as required 
by AutoDock Vina [26]. Moreover, the water 
molecules and native ligands were removed, polar 
hydrogens were added, and Kollman charges were 
also assigned to target proteins using AutoDock 
tools.

2.4. Identification of Active Site

All these enzymes had different ligands already 
bound to their active sites such as CE4 in 
CTX-M14, AMP in AmpC, 1OG in SHV-1 and 
CE3 in CTX-M9 βLs. These ligands provided basic 
information about the active sites of these enzymes.

2.5. Grid Box Preparation

The grid box was prepared around the already bound 
ligands using AutoDock tools [27, 28]. Briefly, the 
grid spacing set at 1Å, the dimensions and central 
coordinates adjusted at 25 × 27 × 25 Å, x = 8.679, 
y = 6.851, z = 9.225 for AmpC βL, 27 × 27 × 27 Å, 
x = 10.101, y = 9.983, z = 10.295 for CTX-M9 βL, 
25 × 20 × 23 Å, x = 8.026, y = 12.521, z = 10.42 
for SHV-1 βL, and 23 × 21 × 23 Å, x = 15.784, 
y = 32.761, z = 40.973 for CTX-M14 βL. All this 
information on grid boxes was then recorded for 
docking.  

2.6. Molecular Docking

Docking was performed via AutoDock Vina using 
the vina command (“\vina\vina.exe” --config conf.
txt --log log.txt) in command prompt [29]. The 
Lamarckian Genetic Algorithm (LGA) was run 
at default parameters at 10 distinct sites [19]. To 
ensure the reliability of docking, native ligands 
were also redocked into the same binding sites. The 
output files were saved in PDB format to analyze the 
binding interactions of ligands at the binding sites 
of target enzymes, and RMSD values below 2.0 
Å were considered acceptable for validation [27].

2.7. Pharmacokinetic Profiles of Phytochemicals

The druglike and toxicity profiles of top scoring 
phytochemicals were also determined by submitting 
their canonical SMILES to admetSAR (http://
lmmd.ecust.edu.cn/admetsar2/) and PROTOX-II 

(https://tox-new.charite.de/protox_II/). Compounds 
were screened according to Lipinski’s Rule of Five, 
Ghose and Veber filters, and toxicity thresholds; 
molecules satisfying at least four criteria were 
considered as drug-like candidates [30]. The overall 
in-silico workflow included compound selection, 
protein preparation, docking validation, screening, 
and ADMET profiling.

3.    RESULTS AND DISCUSSION

The rise in antibiotic resistance is largely attributed 
to the inappropriate and indiscriminate use of 
antimicrobial agents. This situation is becoming 
increasingly critical as many of the bacterial 
strains have adopted the mechanism of hydrolytic 
inactivation of β-lactam antibiotic via βLs [3].  This 
study primarily investigated AmpC, CTX-M-9, 
CTX-M-14, and SHV-1 βLs, which contribute to 
the inactivation of β-lactam antibiotics, with the 
aim of identifying potential inhibitors against these 
enzymes. Docking analysis of 73 phytocompounds 
from C. arabica against four selected enzymes 
revealed significant variations in the binding 
affinities. Among these, tannin (AmpC), quercetin 
(SHV-1), epicatechin (CTX-M9), and quercitrin 
(CTX-M14) displayed strongest interactions with 
binding energies of -8.5, -8.6, -7.7, and -8.6 kcal/mol, 
respectively, outperforming the reference inhibitor 
Avibactam. Strikingly, all these phytocompounds 
showed stable hydrogen and hydrophobic bonding 
with active side residues such as Lys73, Ser130, 
Asp123, and Gly32. These amino acid residues are 
considered essential for the β-lactam hydrolyzing 
activity of the enzymes.

Plants are well known reservoirs of bioactive 
compounds guiding   modern therapeutic 
development. Phytocompounds have demonstrated 
antimicrobial, antiviral, anticancer, anti-Alzheimer, 
anti-inflammatory, and antioxidant activities 
[31]. However, screening of these thousands of 
phytochemicals was traditionally labor-intensive 
and time-consuming, which, with the advent 
of various bioinformatic tools, has become 
comparatively easy [32]. Molecular docking, 
one of the most widely used bioinformatic tools, 
screens compounds based on their affinity towards 
target enzymes. Thus, it enables virtual screening 
and identification of phytocompounds with the best 
activity in a cost-effective and time-efficient manner 
[33]. Molecular docking was also utilized in this 
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study to identify the phytocompounds of C. arabica 
that exhibit the highest inhibitory activity against 
target βLs. Table 1 enlists the phytocompounds 
and their binding affinities for respective target 
enzymes.

In-silico docking analysis showed that tannin 
exhibited a strong binding affinity of -7.6 kcal/mol 
against AmpC βL and was 28.8% more effective 
compared to synthetic inhibitor Avibactam (-5.9 
kcal/mol). Figure 1 shows the 3D interactions of 
tannin at the binding site of target AmpC βL. Other 
phytochemicals including quercetin, epicatechin, 
naringenin, and caffeic acid also showed 
comparatively high binding affinities for AmpC βL 
relative to Avibactam (Table 1).

Tannin, a phenolic component naturally 
occurring in coffee and various types of teas, 
has been reported to exhibit several beneficial 
pharmacological properties, including high 
antioxidant properties and immune system 
stimulation [34, 35]. Moreover, it may help lower 
blood cholesterol levels [36]. Several studies have 
also reported its antibacterial activities against 
both Gram-positive and Gram-negative pathogens, 
primarily by disrupting bacterial membranes and 
inducing cellular damage [37, 38]. Figure 2 presents 
the 2D interaction of both tannin and Avibactam 
with active site residues, showing that tannin 
formed many conventional hydrogen bonds as well 
as van der Waals interactions with several active site 
residues, whereas Avibactam formed conventional 
hydrogen bonds with only four amino acid residues 
of AmpC βL. The antimicrobial activity of tannin 

and other polyphenols derived Thai medicinal plant 
against extended spectrum βL (ESBL) producing 
Escherichia coli has also been reported  [39].

Among the tested phytochemicals, quercetin 
exhibited the highest binding affinity towards 
SHV-1 βL (-8.6 kcal/mol), followed by tannin 
(-6.5 kcal/mol), epicatechin (-6.5 kcal/mol), and 

S. No. Phytochemicals Pubchem ID Binding energies (kcal/mol)
AmpC SHV-1 CTX-M9 CTX-M14

1 Tannin 16129778 -8.5* -6.5 -7 -6.4
2 Quercetin 5280343 -7.4 -8.6* -7.2 -7.6
3 Epicatechin 72276 -7.3 -6.5 -7.7* -7.2
4 Quercitrin 5280459 -7.3 -6.2 -6.5 -8.6*
5 Hyperoside 5281643 -7.3 -6.3 -6.1 -7.7
6 Naringenin 932 -7.1 -6.2 -6.4 -7.1
7 Kaempferol 5280863 -6.9 -6.1 -7 -7.6
8 Caffeic acid 689043 -6.5 -6.3 -7.1 -7.2
9 Avibactam 9835049 -5.9 -5.4 -5.5 -5.2

* highest binding affinities

Table 1. The binding energies of top scoring phytochemicals as well as synthetic inhibitor (Avibactam).

Fig. 1. 3D interactions of tannin at the binding site of 
AmpC βL.

Fig. 2. 2D interactions of tannin (A) and Avibactam (B) 
with the active site residues of AmpC βL.
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quercitrin (-6.2 kcal/mol), as summarized in Table 
1. Avibactam, however, exhibited a comparatively 
lower binding affinity of -5.4 kcal/mol. Figure 3 
illustrates the 3D interactions of quercetin within 
the active site of SHV-1 βL. 

Quercetin, also referred to as quercetine or 
quertine, is a flavanol belonging to the flavonoids 
subclass, and is found abundantly in various 
plants such as red onions, broccoli, and various 
fruits. It’s a natural pigment present in significant 
amounts in several edible plant species. Vafadar et 
al. [40] reported that quercetin shows significant 
cytotoxic activities against ovarian cancer in-vitro 
and in-vivo. Several studies have also reported the 
therapeutic benefits including anti-inflammatory, 
antioxidant, anti-diabetic, and anti-microbial effects 
of quercetin [41]. In addition, quercetin has also 
exhibited protective effects against COVID-19 due 
to its immunomodulatory properties [42]. A more 
recent study by Jian et al. [43] has highlighted that 
quercetin and its derivatives have high potential for 
treating premature ovary failure (POF), polycystic 
ovary syndrome (PCOS), endometrial carcinoma 
(EC) and other gynecological disorders. Figure 4 
illustrates the 2D binding interactions of quercetin 
and Avibactam with the amino acid residues of 
SHV-1 βL. Lys73 was identified as a common 
residue interacting with both ligands via van der 
Waals interaction. The results were in coherence 
with finding of another study which reported the 
in-vitro inhibition of βL enzyme of Ficus religiosa 
bark extract likely due to presence of quercetin and 
related flavonoids [9].

Epicatechin, a flavanol abundantly found 
in tea, cocoa, and several fruits, exhibited the 
highest binding affinity against CTX-M9 βL, with 
a docking score of -7.7 kcal/mol. Avibactam, in 
comparison, exhibited a lower binding affinity of 
-5.5 kcal/mol for CTX-M9 βL. Although several 
phytocompounds demonstrated higher binding 
affinities than Avibactam, only the top-performing 
compounds are listed in Table 1. Figure 5 illustrates 
the 3D docking interactions between CTX-M9 βL 
and epicatechin.

Epicatechin is a monomeric flavonoid with 
several reported therapeutic benefits. Seo et al. 
[44] reported that epicatechin and gallic acid can 
enhance muscle mass and potentially ameliorate 
age-related muscle decline. Epicatechin and its 

derivatives also exhibit potent antioxidant and anti-
inflammatory activities, significantly improving 
neuronal health following brain injury [45, 46]. 2D 
interactions of epicatechin and Avibactam within 
the active site of the CTX-M9 βL are represented in 
Figure 6. Epicatechin interacted with several active 
site residues of CTX-M9 βL via conventional and 
non-conventional hydrogen bonds, van der Waals 
forces, and hydrophobic interactions. Avibactam, on 
the other hand, did not establish any conventional 
hydrogen bonding. Asn132 and Thr216 were 
identified as common residues interacting with 
both epicatechin and Avibactam, though the nature 
of interactions differed. Buchmann et al. [47] 
also highlighted the synergistic potential of using 
epicatechin-antibiotic combination in fighting 
against βL-producing ESKAPE pathogens through 
time-kill assay. Additionally, epicatechin and its 
derivatives also show significant inhibitory activities 
against Staphylococcus aureus by suppressing its 
biofilm formation and βL enzymatic activity [48].

Quercitrin exhibited the highest binding 
affinity of -8.6 kcal/mol for CTX-M14 βL. In 
contrast, Avibactam displayed a comparatively 

Fig. 3. 3D interactions of quercetin at the binding site of 
SHV-1 βL.

Fig. 4. 2D interactions of quercetin (A) and Avibactam 
(B) with the active site residues of SHV-1 βL.
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lower binding energy of -5.2 kcal/mol. Several other 
C. arabica phytocompounds also demonstrated 
stronger affinities than Avibactam, as summarized 
in Table 1. The 3D interactions of CTX-M14 βL 
and quercitrin are shown in Figure 7, illustrating 
hydrogen bonds and hydrophobic contacts with key 
catalytic site residues.

Quercitrin is also a flavonoid glycoside 
derivative of quercetin linked with rhamnose sugar. 
Like other phytocompounds, it is ubiquitously found 
in several grains, leaves and other parts of vegetables 
and fruits [49]. Quercitrin has been reported to have 
significant anti-inflammatory and anti-tumorigenic 
activities, especially against prostate and bladder 
cancers [50, 51]. Li et al. [52] reported that 
quercitrin induced treatments significantly reduced 
tumor cell viability in lung adenoma induced mice. 
It is also reported to show hair stimulating activities 
by activating the expression of growth factors 
through MAPK pathway in follicle cells [53]. The 
2D interactions of quercitrin and Avibactam at the 
binding site of CTX-M14 βL are shown in Figure 
8. Lys73, Tyr105, Ser130, Thr216, and Ser237 were 
some of the common amino acids of CTX-M14 βL 

interacting with both quercitrin and Avibactam in 
different types of bonding interactions.

The pharmacological profiles of top-
scoring phytochemicals and Avibactam were 
also evaluated to analyze their drug-likeness and 
therapeutic potential [30]. This analysis was based 
on Lipinski’s Rule of Five, which evaluates key 
physicochemical properties such as molecular 
weight, hydrogen bond donor and acceptor counts, 
molar refractivity, and other relevant descriptors to 
predict the potential of a compound to serve as a 
drug candidate [54-56]. As summarized in Table 2, 
majority of the phytochemicals satisfied the drug-
likeness criteria.  The favorable pharmacokinetic 
properties of these phytocompounds also highlight 
their potential as lead compounds for further 
therapeutics development. In summary, C. arabica 
harbors diverse array of phytochemicals with 
significant potential to inhibit βLs responsible for 
antibiotic resistance in Gram-negative pathogens. 
These compounds may not only enhance the 
activity of β-lactam antibiotics but also help restore 
their efficacy against resistant bacterial strains.

Fig. 5. 3D interactions of epicatechin at the binding site 
of CTX-M9 βL.

Fig. 6. 2D interactions of epicatechin (A) and Avibactam 
(B) with the active site residues of CTX-M9 βL.

Fig. 7. 3D interactions of quercitrin at the binding site of 
CTX-M14 βL.

Fig. 8. 2D interactions of quercitrin (A) and Avibactam 
(B) with the active site residues of CTX-M14 βL.
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4.    CONCLUSIONS

In conclusion, plant-derived natural compounds 
are receiving growing attention in the field of drug 
discovery due to their diverse therapeutic benefits. 
The integration of bioinformatic approaches in this 
field has also significantly accelerated the process 
of identifying and characterizing potential drug 
candidates from plants. This study also employed 
multiple in-silico approaches to screen and identify 
the phytocompounds of C. arabica that can inhibit 
the βLs, which contribute significantly to antibiotic 
resistance in Gram-negative pathogens such as 
E. coli and Klebsiella pneumoniae. Among the 
screened phytocompounds, tannin (-8.5 kcal/
mol), epicatechin (-7.7 kcal/mol), quercetin 
(-8.6 kcal/mol) and quercitrin (-8.6 kcal/mol) 
displayed stronger binding affinities for the four 
target enzymes (AmpC, CTX-M9, SHV-1 and 
CTX-M14 βLs), respectively, as compared to the 
Avibactam, a synthetic βLs inhibitor. Moreover, 
the pharmacological analysis of the top scoring 
phytochemicals also confirmed their drug-like 
properties and safety profiles. Further in-vitro, in-
vivo, and molecular dynamics studies are required 
that can validate the potential therapeutic benefits 
of these natural compounds in controlling β-Lactam 
resistance. 
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