# Close Form Solution for Dielectric Cylindrical Shell in Fractional Dimensional Space

## Close Form Solution for Dielectric Cylindrical Shell in Fractional Dimensional Space

## DOI:

https://doi.org/10.53560/PPASA(59-2)757## Keywords:

Fractional dimensional –Space, Laplacian-equation, Dielectric coated cylinder, Electric potential, Analytical Solution, Method of Separation Variables## Abstract

We have studied the Laplacian equation in non-integer space which had been previously used to describe complex phenomena in physics and electromagnetism. We have applied this idea to a dielectric cylindrical shell to find the electric potential and field of a dielectric coated cylinder analytically in fractional dimensional space. The problem is derived using Gegenbauer polynomials. This close form gneral solution solved in fractional dimensional space can be applied for various materials of cylindrical shell, outside shell and inside the cylindrical core. The obtained solution is retrieved for integer order by setting the fractional parameter α=3.

## References

C.G. Bollini, J.J. Giambiagi, Dimensional renormalization: The number of dimensions as a regularizing parameter, Nuovo Cimento B 12 (1972) 2026.

J.F. Ashmore, On renormalization and complex spaceâ€“time dimensions, Commun. Math. Phys.29 (1973) 177â€“187.

K.G. Wilson, Quantum field-theory models in less than 4 dimension, Phys. Rev. D 7 (10) (1973) 2911â€“2926.

F.H. Stillinger, Axiomatic basis for spaces with noninteger dimension, J. Math. Phys. 18 (6) (1977) 1224â€“1234.

X.F. He, Excitons in anisotropic solids: The model of fractional-dimensional space, Phys. Rev. B 43 (3) (1991) 2063â€“2069.

C.M. Bender, S. Boettcher, Dimensional expansion for the Ising limit of quantum field theory, Phy. Rev. D 48 (10) (1993) 4919â€“4923.

C.M. Bender, K.A. Milton, Scalar Casimir effect for a D-dimension sphere, Phys. Rev. D 50 (10) (1994) 6547â€“6555.

V.E. Tarasov, Fractional generalization of Liouville equations, Chaos 14 (2004) 123â€“127.

V.E. Tarasov, Electromagnetic fields on fractals, Modern Phys. Lett. A 21 (20) (2006) 1587â€“1600.

A. Zeilinger, K. Svozil, Measuring the dimension of spaceâ€“time, Phys. Rev. Lett. 54 (1985) 2553â€“2555.

S. Muslih, D. Baleanu, Fractional multipoles in fractional space, Nonlinear Anal. 8 (2007) 198â€“203.

C. Palmer, P.N. Stavrinou, Equations of motion in a noninteger-dimensionspace, J. Phys. A 37 (2004) 6987â€“7003.

J.D. Jackson, Classical Electrodynamics, 3rd ed., John Wiley, New York, 1999.

Julius Adams Stratton, Electromagnetic Theory, 640 Pages, 1941, Wiley-IEEE Press.

T. Myint-U, L. Debnath, Linear Partial Differential Equations for Scientists and Engineers, 4th ed., 2007.

V.E. Tarasov, Gravitational field of fractals distribution of particles, Celestial Mech. and Dynam. Astronom. 94 (2006) 1â€“15.

P. M. Morse and H. Feshbach, Methods of Theoretical Physics, Part II, pages 1184-1185, New York: McGraw-Hill, 1953.

Dumitru Baleanu, Alireza K. Golmankhaneh, Ali K. Golmankhaneh, On electromagnetic field in fractional space, Nonlinear Analysis: Real World Applications 11 (2010) 288â€“292.

V.E. Tarasov, Vector Calculus in Non-Integer Dimensional Space and its Applications to Fractal Media, Eq.(77), Commun Nonlinear Sci Numer Simulat 20 (2015) 360â€“374.

## Downloads

## Published

## How to Cite

*Proceedings of the Pakistan Academy of Sciences: A. Physical and Computational Sciences*,

*59*(2), 43–46. https://doi.org/10.53560/PPASA(59-2)757