An Improved Blood Vessel Extraction Approach from Retinal Fundus Images Using Digital Image Processing
Blood Vessel Extraction rom Retinal Fundus Images
Keywords:
fundus, diabetic retinopathy, sigmoid function, Gaussian mixture model (GMM), support vector machine (SVM), contrast limited adaptive histogram equalization (CLAHE), Markov’s random field (MRF)Abstract
Diseases like glaucoma, macular degeneration, hypertensive retinopathy and diabetic retinopathy has a major share in complete or partial vision loss in humans. Early diagnose of these diseases is possible through temporal examination of the shape and form, bifurcation patterns and growth of vessels present in the retinal fundus images. In this work, an efficient and rapid scheme to extract the retinal vasculature. In the first step only the green plane is considered and processed out of the RGB color space to accomplish the segmentation process. Contrast enhancement is achieved through applying sigmoid function followed by background exclusion. Finally vessels are extracted through hysteresis thresholding and morphological processing to enhance the fine details in the resultant image. Tradeoff between segmentation accuracy and time consumption of segmentation algorithm is minimized by producing promising accuracy and other metrics. The scheme is tested and evaluated on the retinal fundus images in the databases like STARE and DRIVE. The produced results evaluated and compared to the other state of the art work and proved to be better and outperformed in most cases.
References
Khan, K.A., S.M. Kamran, M.N. Qureshi, & Y. Jamal. Frequency of retinopathy in newly diagnosed patients of type 2 diabetes mellitus (DM). Pak Armed Forces Medical Journal 65(1): 63-67 (2015).
Minar, J., M. Pinkava, K. Riha, M.K. Dutta, & N. Sengar. Automatic extraction of blood vessels and veins using laplace operator in fundus image. In: IEEE International Conference on Green Computing and Internet of Things, Delhi, India, 8-10 October 2015, p. 23-26 (2015).
Fraz, M.M., P. Remagnino, A. Hoppe, S. Velastin, B. Uyyanonvara, & S.A. Barman. A supervised method for retinal blood vessel segmentation using line strength, multiscale Gabor and morphological features. In: IEEE International Conference on Signal and Image Processing Applications, Kuala Lumpur, Malaysia, 16-18 November 2011, p. 410-415 (2011).
Raja, D.S.S., S. Vasuki, & D.R. Kumar. (2014). Performance analysis of retinal image blood vessel segmentation. Advanced Computing (an international journal) 5(2/3): 17 (2014).
Singh, N., & L. Kaur. A survey on blood vessel segmentation methods in retinal images. In: IEEE International Conference on Electronic Design, Computer Networks & Automated Verification, Shillong, India, 29-30 January 2015, p. 23-28(2015).
Wankhede, P.R., & K.B. Khanchandani. Retinal blood vessel segmentation using graph cut analysis. In: IEEE International Conference on Industrial Instrumentation and Control, Pune, India, 28-30 May 2015, p. 1429-1432 (2015).
Calivá, F., M. Aletti, B. Al-Diri, & A. Hunter. A new tool to connect blood vessels in fundus retinal images. In: 37th Annual IEEE International Conference on Engineering in Medicine and Biology Society, Milan, Italy, 25-29 August 2015, p. 4343-4346 (2015).
Awan, A.W., Z.W. Awan, & M.U. Akram. A robust algorithm for segmentation of blood vessels in the presence of lesions in retinal fundus images. In: IEEE International Conference on Imaging Systems and Techniques, Macau, China, 16-18 September 2015, p. 1-6 (2015).
Singh, N.P., R. Kumar, & R. Srivastava. Local entropy thresholding based fast retinal vessels segmentation by modifying matched filter. In: IEEE International Conference on Computing, Communication & Automation (ICCCA), Greater Noida, India, 15-16 May 2015, p. 1166-1170 (2015).
Roychowdhury, S., D.D. Koozekanani, & K.K. Parhi. Blood vessel segmentation of fundus images by major vessel extraction and subimage classification. IEEE Journal of Biomedical and Health Informatics 19(3): 1118-1128 (2015).
Salazar-Gonzalez, A., D. Kaba, Y. Li, & X. Liu. Segmentation of the blood vessels and optic disk in retinal images. IEEE Journal of Biomedical and Health Informatics 18(6): 1874-1886 (2014).
Osareh, A., & B. Shadgar. Automatic blood vessel segmentation in color images of retina. Iranian Journal of Science and Technology 33(B2): 191 (2009).
Phyo, O., & A. Khaing. Automatic detection of optic disc and blood vessels from retinal images using image processing techniques. International Journal of Research in Engineering and Technology 3(03):300-307 (2014).
Joshi, S., & P.T. Karule. Retinal blood vessel segmentation. International Journal of Engineering and Innovative Technology 1(3): 175-178 (2012).
Wilkinson, M.H., T. Wijbenga, G. De Vries, & M.A. Westenberg. Blood vessel segmentation using moving-window robust automatic threshold selection. In: IEEE International Conference on Image Processing, Barcelona, Spain,14-17 September 2003; Vol. 2, p. 1093-1096 (2003).
Yi, F.L., & W.H. Xu. Segmentation of blood vessels in color fundus images based on optimal multi-threshold method. In: IEEE International Conference on Machine Learning and Cybernetics Xian, Shaanxi, China, 15-17 July, 2012; Vol. 2, p.725-728 (2012).
Soares, J.V., J.J. Le, R.M. Cesar-Jr, H.F. Jelinek, & M.J. Cree. (2006). Retinal vessel segmentation using the 2-D Morlet wavelet and supervised classification. IEEE Transactions on Medical Imaging 25(9): 1214-1222 (2006).
Akhavan, R., & K. Faez. A novel retinal blood vessel segmentation algorithm using fuzzy segmentation. International Journal of Electrical and Computer Engineering 4(4): 561-572 (2014).
Mohammadi Saffarzadeh, V., A., Osareh, & B. Shadgar. Vessel segmentation in retinal images using multi-scale line operator and K-means clustering. Journal of Medical Signals and Sensors 4(2): 122-129 (2014).
Maragatham, G., & S.M.M. Roomi. A review of image contrast enhancement methods and techniques. Research Journal of Applied Sciences, Engineering and Technology 9(5): 309-326 (2015).
Image enhancement and space-variant color reproduction method for endoscopic images using adaptive sigmoid function. In: IEEE 36th Annual International Conference of the Engineering in Medicine and Biology Society (EMBC), Chicago, USA, 26-30 August 2014, p. 3905-3908 (2014).
Hassan, N.Y., & N. Aakamatsu. Contrast enhancement technique of dark blurred image. International Journal of Computer Science and Network Security 6(2): 223-226 (2006).
Hassan, N., & & N. Akamatsu. A new approach for contrast enhancement using sigmoid function. The International Arab Journal of Information Technology 1(2): 221-226 (2004).
Verma, HK., & S. Pal. “Modified Sigmoid Function Based Gray Scale Image Contrast Enhancement Using Particle Swarm Optimization. Journal of the Institution of Engineers (India): Series B 97(2): 243-251 (2016).
Staal, J., M.D. Abràmoff, M. Niemeijer, M.A. Viergever, & B. Van Ginneken. Ridge-based vessel segmentation in color images of the retina. IEEE Transactions on Medical Imaging 23(4): 501-509 (2004).
Hoover, A. D., V. Kouznetsova, & M. Goldbaum. Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Transactions on Medical Imaging 19(3): 203-210 (2000).
Xu, L., & S. Luo. A novel method for blood vessel detection from retinal images. Biomedical Engineering (online) 9(1): 14 (2010).
You, X., Q. Peng, Y. Yuan, Y.M. Cheung, & J. Lei. Segmentation of retinal blood vessels using the radial projection and semi-supervised approach.Pattern Recognition 44(10): 2314-2324 (2011).
Marín, D., A. Aquino, M.E. Gegúndez-Arias, & J.M. Bravo. A new supervised method for blood vessel segmentation in retinal images by using graylevel and moment invariants-based features. IEEE Transactions on Medical Imaging 30(1): 146-158 (2011).
Chaudhuri, S., S. Chatterjee, N. Katz, M. Nelson, & M. Goldbaum. Detection of blood vessels in retinal images using two-dimensional matched filters. IEEE Transactions on Medical Imaging 8(3): 263-269 (1989).
Jiang, X., & D. Mojon. Adaptive local thresholding by verification-based multithreshold probing with application to vessel detection in retinal images. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(1): 131-137 (2003).
Zana, F., & J.C. Klein. Segmentation of vessellike patterns using mathematical morphology and curvature evaluation. IEEE Transactions on Image Processing 10(7): 1010-1019 (2001).
Mendonca, A. M., & A. Campilho. Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction. IEEE Transactions on Medical Imaging 25(9): 1200-1213 (2006).
Fraz, M.M., S.A. Barman, P. Remagnino, A. Hoppe, A. Basit, B. Uyyanonvara, & C.G. Owen. An approach to localize the retinal blood vessels using bit planes and centerline detection. Computer Methods and Programs in Biomedicine 108(2): 600-616 (2012).