A New Parametrization Framework for Dark Energy and Total Cosmic Fluid

Authors

  • Sivakumar Chandrahasan Department of Physics, Maharaja’s College, Ernakulam (Affiliated to MG University, Kottayam), Kerala, India

DOI:

https://doi.org/10.53560/PPASA(62-2)690

Keywords:

Equation of State, Flat Universe, Effective Pressure Parameter, Dark Energy, Sigmoid Function

Abstract

A novel parametrization of the Equation of State (EoS) for a dynamic dark energy is introduced and its consequences in cosmology including the late time transition from a decelerating expansion to an accelerating expansion of the universe are investigated. We introduce a simple parametrization of EoS for the dynamic dark energy using a smooth sigmoid function that contains a transition redshift ( ) at which a switch over in the dynamics of the universe observed to be occurred. The present parametrization involves three model parameters ,  and  constrained by the observational values of cosmological parameters from recent cosmological data. This EoS model introduces a continuous and smooth transition between matter-dominated and dark energy-dominated epochs as well. Such a parametrization enables dark energy to influence the late time cosmic dynamics of the universe without disturbing the early expansion dynamics involving cosmic microwave background radiation of the universe. We formulate the corresponding Friedmann theoretical framework through cosmological parameters like Hubble parameter, density parameter and deceleration parameter. It is then generalised to the total effective EoS parameter by the same function. By performing an analytical study of the cosmological parameters, the proposed model is compared with the standard cosmological model. The constraints derived for the sigmoid-based phenomenological dark energy parametrization describes its wide applicability to dynamic dark energy models that account for late-time cosmic acceleration and the overall evolution of the universe.

References

1. A.G. Riess, A.V. Filippenko, P. Challis, A. Clocchiattia, A. Diercks, P.M. Garnavich, R.L. Gilliland, C.J. Hogan, and et al. Observational evidence from supernovae for an accelerating universe and a cosmological constant. The Astronomical Journal 116: 1009-1038 (1998).

2. S. Perlmutter, G. Aldering, G. Goldhaber, R.A. Knop, P. Nugent, P.G. Castro, and et al. Measurement of Ω and Λ from 42 high redshift supernovae. The Astrophysical Journal 517(2): 565-586 (1999).

3. M. Tegmark, M. Strauss, M. Blanton, K. Abazajian, S. Dodelson, H. Sandvik, and et al. Cosmological parameters from SDSS and WMAP. Physical Review D 69: 103501 (2004).

4. D.N. Spergel, L. Verde, H.V. Peiris, E. Komatsu, M.R. Nolta, C.L. Bennett, and et al. First-year Wilkinson microwave anisotropy probe (WMAP) observations: Determination of cosmological parameters. The Astrophysical Journal Supplement Series 148: 175-194 (2003).

5. S.D. Odintsov and V.K. Oikonomou. Autonomous dynamical system approach for f (R) gravity. Physical Review D 96(10): 104049 (2017).

6. S. Capozziello, S. Nojiri, and S.D. Odintsov. The role of energy conditions in f (R) cosmology. Physics Letters B 781: 99-106 (2018).

7. S.D. Odintsov and V.K. Oikononou. Running of the spectral index and inflationary dynamics of f(R) gravity. Physics Letters B 833: 137353 (2022).

8. D. Liu and M. Reboucas. Energy conditions bounds on f(T) gravity. Physical Review D 86: 083515 (2012).

9. M. Zubair, A. Ditta, E. Gudekli. P. Bhar, and H. Azmat. Anisotropic compact models in f(T) gravity with Tolman-Kuchowics spacetime. International Journal of Geometric Methods in Modern Physics 18(04): 2150060 (2021).

10. J.B. Jimenez, L. Heisenberg, and T. Koivisto. Coincident general relativity. Physical Review D 98(4): 044048 (2018).

11. M. Koussour and A. De. Observational constraints on two cosmological models of f(Q) theory. The European physical journal C 83(5): 400 (2023).

12. A. Mussatayeva, N. Myrzakulov, and M. Koussour. Cosmological constraints on dark energy in f(Q) gravity: A parametrized perspective. Physics of the Dark universe 42: 101276 (2023).

13. N. Myrzakulov, M. Koussour, and D.J. Gogoi. A new f(Q) cosmological model with H (z) quadratic expansion. Physics of Dark Universe 42: 101268 (2023).

14. M. Demianski and E. Piedipalumbo. The cosmological constant-A brief history and recent results. Astronomy Reports 59(6): 484-490 (2015).

15. P.J.E. Peebles and B. Ratra. The cosmological constant and dark energy. Reviews of Modern Physics 75(2): 559-606 (2003).

16. T. Padmanabhan. Cosmological constant-The weight of the vacuum. Physics Reports 380: 235-320 (2003).

17. S. Weinberg. The cosmological constant problem. Reviews of Modern Physics 61: 1-23 (1989).

18. E.J. Copeland, M. Sami, and S. Tsujikawa. Dynamics of dark energy. International Jornal of Modern Physics D 15(11): 1753-1936 (2006).

19. I. Zlatev, L. Wang, and P.J. Steinhardt. Quintessence, Cosmic Coincidence, and the Cosmological Constant. Physical Review Letters 82(5): 896-899 (1999).

20. H.E.S. Velten, R.F. Vom Marttens, and W. Zimdahl. Aspects of the cosmological coincidence problem. The European Physical Journal C 74(11): 3160 (2014).

21. N. Aghanim, Y. Akrami, M. Ashdown, J. Aumont, C. Baccigalupi, M. Ballardini, and et al. Planck 2018 results VI Cosmological parameters, Astronomy and Astrophysics 641: A6 (2020).

22. L. Perivolaropoulos and F. Skara. Challenges of ΛCDM: An update. New Astronomy Reviews 95: 101659 (2022).

23. E.D. Valentino, O. Mena, S. Pan, L. Visinelli, W. Yang, A. Melchiorri, D.F. Mota, A.G. Riess, and J. Silk. In the realm of the Hubble tension-A review of solutions. Classical and Quantum Gravity 38(15): 153001 (2021).

24. R.R. Caldwell, R. Dave, and P.J. Steinhardt. Cosmological Imprint of an Energy Component with General Equation of State. Physical Review Letters 80(8): 1582-1585 (1998).

25. P.J. Steinhardt, L. Wang, and I. Zlatev. Cosmological Tracking Solutions. Physical Review D 59(12): 123504 (1999).

26. S. Tsujikawa. Quintessence: A Review. Classical and Quantum Gravity 30(21): 214003 (2013).

27. T. Chiba, T. Okabe, and M. Yamaguchi. Kinetically Driven Quintessence. Physical Review D 62(2): 023511 (2000).

28. C. Armendariz-Picon, V. Mukhanov, and P.J. Steinhardt. Dynamical Solution to the Problem of a Small Cosmological Constant and Late-Time Cosmic Acceleration. Physical Review Letters 85(21): 4438-4441 (2000).

29. M.C. Bento, O. Bertolami, and A.A. Sen. Generalized Chaplygin Gas, Accelerated Expansion, and Dark-Energy-Matter Unification. Physical Review D 66(4): 043507 (2002).

30. A.Y. Kamenshchik, U. Moschella, and V. Pasquier. An Alternative to Quintessence. Physics Letters B 511(2): 265-268 (2001).

31. M. Chevallier and D. Polarski. International Journal of Modern Physics D 10(2): 213-224 (2001).

32. E.V. Linder. Exploring the Expansion History of the Universe. Physical Review Letters 90(9): 091301 (2003).

33. H.K. Jassal, J.S. Bagla, and T. Padmanabhan. WMAP constraints on low redshift evolution of dark energy. Monthly Notices of Royal Astronomical Society Letters 356(1): L11-L16 (2005).

34. J.Z. Ma and X. Zhang. Probing the dynamics of dark energy with novel parametrizations. Physics Letters B 669(3): 233-238 (2011).

35. H. Wei, X.P. Yan, and Y.N. Zhou. Cosmological applications of Pade approximant. Journal of Cosmology and Astroparticle Physics 2014: 045 (2014).

36. B.R. Dinda and N. Banerjee. A comprehensive data-driven odyssey to explore the equation of state dark energy. The European Physical Journal C 84: 688 (2024).

37. L.A. Escamilla, W. Giare, E.D. Valentino, R.C. Nunes, and S. Vagnozzi. The state of the dark energy equation of state circa 2023. Journal of Cosmology and Astroparticle Physics 2405: 091 (2024).

38. J.K. Singh, P. Singh, E.N. Saridakis, S. Myrzakul, and H. Balhara. New parametrization of the dark energy equation of state with a single parameter. Universe 10: 246 (2024).

39. Y. Tiwari, B. Ghosh, and R.K. Jain. Towards a possible solution to the Hubble tension with horndeski gravity. The European Physical Journal C 84: 220 (2024).

40. G. Montani, M.D. Angelis, F. Bombacigna, and N. Carievaro. Metric f(R) gravity with dynamical dark energy as a scenario for the Hubble tension. Monthly Notices of Royal Astronomical Society Letters 527(1): L156-L161 (2024).

41. M. Koussour, S. Bekov, A. Syzdykova, S. Muminov, I. Ibragimov, and J. Rayimbaevetal. Observational constraints on a generalized equation of state model. Physics of The Dark Universe 45: 101799 (2025).

42. A. Aich. Phenomenological DE model with hybrid dynamic cosmological constant, Classical and Quantum Gravity 39(3): 035010 (2022).

43. A. Friedmann. On the curvature of space. General Relativity and Gravitation 31(12): 1991-2000 (1999).

44. J.V. Narlikar (Ed.). An Introduction to cosmology. Cambridge University Press, Cambridge (1993).

45. A.H. Guth. The inflationary universe: A possible solution to horizon and flatness problems. Physical Review D 23(2): 347-356 (1981).

46. A.G. Adame, J. Aguilar, S. Ahlen, S. Alam, D.M. Alexander, M. Alvarez, O. Alves, A. Anand, U. Andrade, and E. Armengaud. DESI 2024 VI cosmological constraints from the measurements of Baryon acoustic Oscillations. submitted to the Journal of Cosmology and Astroparticle Physics 2025: 012 (2025).

47. J. Bielefeld, R.R. Caldwell, and E.V. Linder. Dark Energy Scaling from Dark Matter to Acceleration. Physical Review D 90(4): 043015 (2014).

48. I. Maor, R. Brustein, J. McMahon, and P.J. Steinhardt. Measuring the Equation of State of the Universe: Pitfalls and Prospects. Physical Review D 65(12): 123003 (2002).

49. R. John, N. Sarath, and T.K. Mathew. Thermal evolution and stability analysis of phenomenologically emergent dark energy model. The European Physical Journal C 83: 697 (2023).

50. S. Cao and B. Ratra. Using lower-redshift, non-CMB, data to constrain the Hubble constant and other cosmological parameters. Monthly Notices of Royal Astronomical Society 513: 5686 (2022).

51. S.D. Odintsov, D.S.C. Gomez, and G.S. Sharov. Modified gravity/dynamical dark energy vs ΛCDM: is the game over. The European Physical Journal C 85: 298 (2025).

52. H. Akaike. A new look at the statistical model identification. IEEE Transactions on Automatic Control 19: 716 (1974).

53. G. Gupta. S. Majumdar, and A.A. Sen. Constraining thawing quintessence. Monthly Notices of Royal Astronomical Society 420(2): 1309-1312 (2012).

Downloads

Published

2025-06-06

How to Cite

Chandrahasan, S. (2025). A New Parametrization Framework for Dark Energy and Total Cosmic Fluid. Proceedings of the Pakistan Academy of Sciences: A. Physical and Computational Sciences, 62(2), 175–191. https://doi.org/10.53560/PPASA(62-2)690

Issue

Section

Research Articles

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.