Lithofacies and Grain-size Analysis of the Oligocene Nari Formation, Benir Anticline, Southern Indus Basin, Pakistan: Evidence of a Marine-to-Continental Depositional Shift
DOI:
https://doi.org/10.53560/PPASA(62-2)687Keywords:
Lithofacies, Grain-size Analysis, Depositional Environment, Oligocene, Nari FormationAbstract
In the Southern Indus Basin, Pakistan, the Nari Formation of Oligocene age represents an important stratigraphic unit that preserves a classical regressive depositional sequence, recording a significant transition from marine to continental environments. This study analyzes the lithofacies and grain-size parameters of the Nari Formation from the Benir anticline section, Southern Indus Basin, to interpret its depositional environments. A 65 m thick stratigraphic section was measured and divided into non-clastic and clastic lithofacies groups. Non-clastic lithofacies group observed in the lower part of the Nari Formation and consists of compacted limestone, coquinoidal limestone and arenaceous limestone lithofacies, indicating deeper outer-ramp to near-shore depositional environments. The clastic lithofacies group was identified in the upper part, which consists of calcareous sandstone, variegated and gypsiferous shale, lateritic sandstone and friable sandstone lithofacies, suggesting continental fluvial depositional conditions. Shale-bearing lithofacies were identified in the middle part of the Nari Formation, reflect evaporitic and oxidizing continental settings. Grain-size analysis of eleven samples from friable sandstone facies supports a river-dominated origin. The vertical transition from marine to continental facies in the Nari Formation reflects a significant depositional shift, documenting a regressive sequence from marine ramp to fluvial settings. This study contributes to the broader understanding of the stratigraphic evolution of the Southern Indus Basin in relation to Oligocene regional tectonic background.
References
1. S. Obaid, A.W. Qureshi, and I.A. Abbasi. Lithofacies, sand-bodies geometry and depositional setting of the Datta Formation in Surghar Range, North Pakistan. SPE-PAPG Annual Technical Conference (28th - 29th November 2005), Islamabad, Pakistan (2005).
2. A.K. Srivastava and R.S. Mankar. Lithofacies architecture and depositional environment of Late Cretaceous Lameta Formation, Central India. Arabian Journal of Geosciences 8(1): 207-226 (2013).
3. A. Bilal, R. Yang, N. Lenhardt, Z. Han, and X. Luan. The Paleocene Hangu formation: A key to unlocking the mysteries of Paleo-Tethys tectonism. Marine and Petroleum Geology 157: 106508 (2023).
4. G. Métais, P.O. Antoine, S.R.H. Baqri, J.Y. Crochet, D. De Franceschi, L. Marivaux, and J.L. Welcomme. Lithofacies, depositional environments, regional biostratigraphy and age of the Chitarwata Formation in the Bugti Hills, Balochistan, Pakistan. Journal of Asian Earth Sciences 34(2): 154-167 (2009).
5. C. Wang, B. Zhang, Y. Lu, Z. Shu, Y. Lu, H. Bao, Z. Meng, and L. Chen. Lithofacies distribution characteristics and its controlling factors of shale in Wufeng Formation-Member 1 of Longmaxi Formation in the Jiaoshiba area. Petroleum Research 3(4): 306-319 (2018).
6. A.A.A.D. Hakro, A.A. Halepoto, M.S. Samtio, R.H. Rajper, A.S. Mastoi, R.A. Lashari, and M.A. Rahoo. The Comparative Depositional Heterogeneity of Manchhar Formation (Siwalik Group), Southern Indus Basin, Pakistan. Journal of Mountain Area Research 9: 1-15 (2024).
7. C. Klein and N.J. Beukes. Geochemistry and sedimentology of a facies transition from limestone to iron-formation deposition in the early Proterozoic Transvaal Supergroup, South Africa. Economic Geology 84(7): 1733-1774 (1989).
8. P. Wang, Z. Jiang, L. Yin, L. Chen, Z. Li, C. Zhang, T. Li, and P. Huang. Lithofacies classification and its effect on pore structure of the Cambrian marine shale in the Upper Yangtze Platform, South China: Evidence from FE-SEM and gas adsorption analysis. Journal of Petroleum Science and Engineering 156: 307-321 (2017).
9. J.E. Houghton, J. Behnsen, R.A. Duller, T.E. Nichols, and R.H. Worden. Particle size analysis: A comparison of laboratory-based techniques and their application to geoscience. Sedimentary Geology 464: 106607 (2024).
10. Q. Khokhar, A.A.A.D. Hakro, S.H. Solangi, I. Siddiqui, and S.A. Abbasi. Textural Evaluation of Nari Formation, Laki Range, Southern Indus Basin, Pakistan. Sindh University Research Journal (Science Series) 48(3): 633-638 (2016).
11. C. Baiyegunhi, K. Liu, and O. Gwavava. Grain size statistics and depositional pattern of the Ecca Group sandstones, Karoo Supergroup in the Eastern Cape Province, South Africa. Open Geosciences 9(1): 554-576 (2017).
12. A.A.A.D. Hakro, W. Xiao, A.S. Mastoi, Z. Yan, M.S. Samtio, and R.H. Rajper. Grain size analysis of the Oligocene Nari Formation sandstone in the Laki Range, southern Indus Basin, Pakistan: Implications for depositional setting. Geological Journal 425: 5440-5451 (2021).
13. G. Zhuang, Y. Najman, S. Guillot, M. Roddaz, P.O. Antoine, G. Métais, A. Carter, L. Marivaux, and S.H. Solangi. Constraints on the collision and the pre-collision tectonic configuration between India and Asia from detrital geochronology , thermochronology , and geochemistry studies in the lower Indus basin , Pakistan. Earth and Planetary Science Letters 432: 363-373 (2015).
14. M. Qasim, O. Tayyab, L. Ding, J.I. Tanoli, Z.I. Bhatti, M. Umar, H. Khan, J. Ashraf, and I.A.K. Jadoon. Exhumation of the Higher Himalaya: Insights from Detrital Zircon U–Pb Ages of the Oligocene–Miocene Chitarwatta Formation, Sulaiman Fold–Thrust Belt, Pakistan. Applied Sciences 13(6): 3418 (2023).
15. L. Ding, M. Qasim, I.A.K. Jadoon, M.A. Khan, Q. Xu, F. Cai, H. Wang, U. Baral, and Y. Yue. The India-Asia collision in north Pakistan: Insight from the U–Pb detrital zircon provenance of Cenozoic foreland basin. Earth and Planetary Science Letters 455: 49-61 (2016).
16. A.A. Halepoto, M.H. Agheem, A.A.A.D. Hakro, S. Ahmed, and S.B. Ahmedani. Geometry and Kinematics of the Gentle to Open Fault-propagation Fold having Four-way Dip Enclosure: Outcrop and Lineament Analysis of the Rois Anticline, Southern Kirthar Fold Belt, Pakistan. Journal of Himalayan Earth Sciences 58(1): 88-106 (2025).
17. A.A. Halepoto, M.H. Agheem, A.A.A.D. Hakro, S. Ahmed, and S.B. Ahmedani. Lateral Strike-slip Deformation and Possible Transition of Extensional Faults to Strike-slip Faults in the Foreland Fold Belt: A Regional to Outcrop Tectonic Synthesis of the Southern Kirthar Fold Belt, NW Indian Plate, Pakistan. Journal of Asian Earth Sciences 291: 106678 (2025).
18. Z. Ahmed, A.S. Khan, and B. Ahmed. Sandstone Composition and Provenance of the Nari Formation, Central Kirthar Fold, Pakistan. Pakistan Journal of Geology 4(2): 90-96 (2020).
19. A.A.A.D. Hakro, M.S. Samtio, R.H. Rajper, and A.S. Mastoi. Major Elements of Nari Formation Sandstone from Jungshahi Area of Southern Indus Basin, Pakistan. Pakistan Journal of Scientific and Industrial Research Series A: Physical Sciences 65(3): 248-259 (2022).
20. M.S. Samtio, A.A.A.D. Hakro, R.A. Lashari, A.S. Mastoi, R.H. Rajper, and M.H. Agheem. Depositional Environment of Nari Formation from Lal Bagh Section of Sehwan Area, Sindh Pakistan. Sindh University Research Journal (Science Series) 53(1): 67-76 (2021).
21. S.B. Ahmedani, A.A.A.D. Hakro, A.S. Mastoi, A.A. Halepoto, A.G. Sahito, S. Akhtar, and R.A. Lashari. Clastic Source and Depositional Environment of Mixed Carbonate-Clastic Sequences in the Oligocene Nari Formation from the Hundi Anticline, Karachi Embayment, Indus Basin, Pakistan. Earth Sciences Research Journal 29(2): 113-130 (2025).
22. A.M. Shar, A.A. Mahesar, G.R. Abbasi, A.A. Narejo, and A.A.A.D. Hakro. Influence of diagenetic features on petrophysical properties of fine-grained rocks of Oligocene strata in the Lower Indus Basin, Pakistan. Open Geosciences 13: 517-531 (2021).
23. A.M. Shar, A.A. Mahesar, A.A. Narejo, and N. Fatima. Petrography and Geochemical Characteristics of Nari Sandstone in Lower Indus Basin, Sindh, Pakistan. Mehran University Research Journal of Engineering and Technology 40(1): 82-92 (2021).
24. S.B. Ahmedani, M.H. Agheem, A.A.A.D. Hakro, A.A. Halepoto, R.A. Lashari, and G.M. Thebo. Integrated Petrographical, Mineralogical, and Geochemical Investigation to Evaluate Diagenesis of Sandstone: A Case Study of the Oligocene Nari Formation from Southern Kirthar Range, Pakistan. Journal of Himalayan Earth Sciences 57(1): 1-22 (2024).
25. F.K. Bender and H.A. Raza (Eds.). Geology of Pakistan. Gebruder Borntraeger, Berlin, Germany (1995).
26. A. Bilal, R. Yang, Y. Li, J. Zhang, H.T. Janjuhah. Microfacies shift in the Late Paleocene–Early Eocene Patala Formation in the Upper Indus Basin (Pakistan): Implications for development of the Ceno-Tethys Ocean. Marine and Petroleum Geology 161: 106693 (2024).
27. A.H. Kazmi and M.Q. Jan (Eds.). Geology and Tectonics of Pakistan. Graphic Publishers, Karachi, Pakistan (1997).
28. S.M.I. Shah (Ed.). Stratigraphy of Pakistan, Memoir 22. Geological Survey of Pakistan, Quetta, Pakistan (2009).
29. D. Bannert, A. Cheema, A. Ahmed, and U. Schaffer. The Structural Development of the Western Fold Belt, Pakistan. Geologisches Jahrbuch Reihe B80: 3-60 (1992).
30. R. Ahmed and J. Ahmed. Petroleum Geology and Prospects of Sukkur Rift Zone, Pakistan with Special Reference to Jaisalmer, Cambay and Bombay High Basins of India. Pakistan Journal of Hydrocarbon Research 3(2): 33-41 (1991).
31. A.H. Kazmi and R.A. Rana. Tectonic Map of Pakistan. Geological Survey of Pakistan Map Series, Quetta, Pakistan (1982).
32. A.H. Kazmi and I.A. Abbasi. Stratigraphy and Historical Geology of Pakistan. National Centre of Excellence in Geology, University of Peshawar, Pakistan (2008).
33. A. Laghari, M.Q. Jan, M.A. Khan, M H. Agheem, A.G. Sahito, and S. Anjum. Petrography and major element chemistry of mafic dykes in the Nagar Parkar Igneous Complex, Tharparkar, Sindh. Journal of Himalayan Earth Science 46(1): 1-11 (2013).
34. M.Q. Jan, A. Laghari, M.A. Khan, M.H. Agheem, and T. Khan. Petrology of calc-alkaline/adakitic basement hosting A-type Neoproterozoic granites of the Malani igneous suite in Nagar Parkar, SE Sindh, Pakistan. Arabian Journal of Geosciences 11: 25 (2018).
35. S. Ahmed, S.H. Solangi, M.S.K. Jadoon, and A. Nazeer. Tectonic evolution of structures in Southern Sindh Monocline, Indus Basin, Pakistan formed in multi-extensional tectonic episodes of Indian Plate. Geodesy and Geodynamics 9(2): 358-366 (2018).
36. S.A. Abbasi, S.H. Solangi, and A. Ali. Seismic Data Interpretation: A Case Study from Southern Sindh Monocline, Lower Indus Basin, Pakistan. Mehran University Research Journal of Engineering and Technology 34(2): 107-115 (2015).
37. B. Wahid, S. ul Alam, A.S. Khan, A.A. Halepoto, and S. Jalal. Reservoir Characterization of Lower Goru Formation Using Seismic and Well Logs Data, Mubarak Gas Field, Lower Indus Basin, Pakistan. Sindh University Research Journal (Science Series) 55(2): 7-17 (2023).
38. M.A. Qureshi, S. Ghazi, M. Riaz, and S. Ahmad. Geo-seismic model for petroleum plays an assessment of the Zamzama area, Southern Indus Basin, Pakistan. Journal of Petroleum Exploration and Production Technology 11(1): 33-44 (2021).
39. R.D. Lawrence, R.S. Yeats, S.H. Khan, A. Farah, and K.A. DeJong. Thrust and strike slip fault interaction along the Chaman transform zone, Pakistan. Geological Society, London, Special Publications 9(1): 363-370 (1981).
40. A. Farah, G. Abbas, K.A. De Jong, and R.D. Lawrence. Evolution of the lithosphere in Pakistan. Tectonophysics 105(1-4): 207-227 (1984).
41. W.E. Crupa, S.D. Khan, J. Huang, A.S. Khan, and A. Kasi. Active tectonic deformation of the western Indian plate boundary: A case study from the Chaman Fault System. Journal of Asian Earth Sciences 147: 452-468 (2017).
42. Hunting Survey Corporation, Reconnaissance Geology of Part of West Pakistan. A Colombo Plan Co-operative Project, Toronto, Canada (1960).
43. A. Khan, M. Imran, M. Iqbal, and A. Nazeer. Structural Styles and Hydrocarbon Potential of Western Kirthar Fold Belt. PAPG-SPE Annual Technical Conference(7th - 9th November 2011), Islamabad, Pakistan (2011).
44. R.L. Folk and W.C. Ward. Brazos River Bar: A Study in the Significance of Grain Size Parameters. Journal of Sedimentary Petrology 27(1): 3-26 (1957).
45. A.A.A.D. Hakro, A.A. Halepoto, A.S. Mastoi, M.S. Samtio, R.H. Rajpar, and A. Noonari. Depositional Environment of Neogene Foreland Deposits (Manchar Formation) from the Bara Nai Section of the Southern Indus Basin, Pakistan. Pakistan Journal of Scientific and Industrial Research, Series A: Physical Sciences 68A(1): 96-105 (2025).
46. S.S. Jagirani, L. Bai, M.D. Jagirani, S.A. Panhwar, B. Neupane, K. Jagirani, W. Ghanghro, U. Baral, and Q.D. Khokhar. Sedimentological Study of Manchar Formation, Kari Buthi Section, Northern Laki Range, Southern Indus Basin, Pakistan. International Research Journal of Earth Sciences 8(2): 9-21 (2020).
47. W.C. Krumbein. Size frequency distributions of sediments. Journal of sedimentary Research 4(2): 65-77 (1934).
48. M. Khan, M.A. Khan, B.A. Shami, and M. Awais. Microfacies analysis and diagenetic fabric of the Lockhart Limestone exposed near Taxila, Margalla Hill Range, Punjab, Pakistan. Arabian Journal of Geosciences 11(2): (2018).
49. M. Rizwan, M. Hanif, N. Ali, and M. Ur Rehman. Microfacies analysis and depositional environments of the Upper Cretaceous Fort Munro Formation in the Rakhi Nala Section, Sulaiman range, Pakistan. Carbonates and Evaporites 35(4): (2020).
50. M. del C. Esqueda, E. Ríos-Jara, J.E. Michel-Morfín, and V. Landa-Jaime. The vertical distribution and abundance of gastropods and bivalves from rocky beaches of Cuastecomate Bay, Jalisco. México. Revista de Biología Tropical, 48(4): 765-775 (2000).
51. P. Zell, S. Beckmann, W. Stinnesbeck, and M. Götte. Mollusks of the upper Jurassic (upper Oxfordian-lower Kimmeridgian) shallow marine Minas Viejas formation, northeastern Mexico. Journal of South American Earth Sciences 62: 92-108 (2015).
52. A. Mancosu and J.H. Nebelsick. Echinoid assemblages from the early Miocene of Funtanazza (Sardinia): A tool for reconstructing depositional environments along a shelf gradient. Palaeogeography, Palaeoclimatology, Palaeoecology 454: 139-160 (2016).
53. E.K. Yordanova and J. Hohenegger. Taphonomy of larger foraminifera: relationships between living individuals and empty tests on flat reef slopes (Sesoko Island, Japan). Facies 46: 169-203 (2002).
54. S.J. Beavington-Penney and A. Racey. Ecology of extant nummulitids and other larger benthic foraminifera: Applications in palaeoenvironmental analysis. Earth-Science Reviews 67(3-4): 219-265 (2004).
55. E. Özcan, A.O. Yücel, L.S. Erkızan, M.N. Gültekin, S. Kayğılı, and S. Yurtsever. Atlas of the Tethyan orthophragmines. Mediterranean Geoscience Reviews 4(1): 3-213 (2022).
56. A. Bilal, R. Yang, H. T. Janjuhah, M.S. Mughal, Y. Li, G. Kontakiotis, and N. Lenhardt. Microfacies analysis of the Palaeocene Lockhart limestone on the eastern margin of the Upper Indus Basin (Pakistan): Implications for the depositional environment and reservoir characteristics. Depositional Record 9(1): 152-173 (2023).
57. R.F. Gilham and C.S. Bristow. Facies architecture and geometry of a prograding carbonate ramp during the early stages of foreland basin evolution: lower Eocene sequences, Sierra del Cadí, SE Pyrenees, Spain. Geological Society, London, Special Publications 149(1): 181-203 (1998).
58. A. Abdullah, M. Mohibullah, A.K. Kasi, S. Ul Alam, and E. Ul Haq. Microfacies and Depositional Settings of the Eocene Nisai Formation, Pishin Belt, Pakistan. Journal of Himalayan Earth Sciences 56(1): 11-32 (2023).
59. U. Sarwar, S. Ghazi, S.H. Ali, M. Mehmood, M.J. Khan, A. Zaheer, and S.J. Arif. Sedimentological and sequence stratigraphic analysis of Late Eocene Kirthar Formation, Central Indus Basin, Pakistan, Eastern Tethys. Earth Sciences Research Journal 28(1): 29-38 (2024).
60. A.A.A.D. Hakro, W. Xiao, Z. Yan, and A.S. Mastoi. Provenance and tectonic setting of Early Eocene Sohnari Member of Laki Formation from southern Indus Basin of Pakistan. Geological Journal 53: 1854-1870 (2018).
61. G. Nichols (Ed.). Sedimentology and Stratigraphy. Wiley-Blackwell, USA (2009).
62. R.C. Selley (Ed.). Applied sedimentology. Academic Press, London, UK (2000).
63. S. Boggs (Ed.). Petrology of Sedimentary rocks. Cambridge University Press, London, UK (2009).
64. M. Lawal and M.H.A. Hassan. Sedimentary and stratigraphic characteristics of the Maastrichtian Dukamaje formation of southern Iullemmeden Basin: Implications for the paleogeography of the Upper Cretaceous trans-Saharan seaway. Journal of African Earth Sciences 200: 104878 (2023).
65. J.L. Melvin (Ed.) Evaporites, Petroleum and Mineral Resources. Elsevier (1991).
66. S.F. Könitzer, S.J. Davies, M.H. Stephenson, and M.J. Leng. Depositional controls on mudstone lithofacies in a basinal setting: implications for the delivery of sedimentary organic matter. Journal of Sedimentary Research 84(3): 198-214 (2014).
67. H.B. Stewart. Sedimentary Reflections of Depositional Environment in San Miguel Lagoon, Baja California, Mexico. Bulletin of the American Association of Petroleum Geologists 42(1): 2587-2618 (1958).
68. R. Passega. Grain size representation by CM patterns as a geologic tool. Journal of Sedimentary Research 34(4): 830-847 (1964).
69. B.K. Sahu. Depositional Mechanisms from the Size Analysis of Clastic Sediments. Journal of Sedimentary Research 34(1): 73-83 (1964).
70. S.K. Ghosh and B.K. Chatterjee. Depositional mechanisms as revealed from grain-size measures of the palaeoproterozoic kolhan siliciclastics, Keonjhar District, Orissa, India. Sedimentary Geology 89(3-4): 181-196 (1994).

