Granulometry based Extrapolation of Depositional Environment of Orangi Sandstone, Nari Formation Exposed around Hub Dam, Pakistan

Authors

  • Erum Bashir Department of Geology, University of Karachi, Karachi, Pakistan
  • Sadia Khaleeq Department of Geology, Federal Urdu University of Arts, Science and Technology, Karachi, Pakistan
  • Shahid Naseem Department of Geology, University of Karachi, Karachi, Pakistan https://orcid.org/0000-0002-7932-6403
  • Maria Kaleem Department of Geology, University of Karachi, Karachi, Pakistan
  • Muhamad Shumail Department of Geology, Federal Urdu University of Arts, Science and Technology, Karachi, Pakistan
  • Wajih Ahmed Department of Geology, D.J. Sindh Govt. Science College, Karachi, Pakistan

DOI:

https://doi.org/10.53560/PPASA(62-2)879

Keywords:

Granulometry, Depositional Model, Orangi Sandstone, Nari Formation, Hub Dam, Oligocene Age

Abstract

To infer the depositional environment, thirty-eight samples of the Orangi Sandstone-the uppermost unit of the Upper Oligocene Nari Formation, exposed at Hub Dam were collected. Granulometric data acquired from standard sieving techniques. The computed graphic mean's average value, was 1.38. Of the 38 samples, 24 were categorized as medium-grained, and the remaining 14 as coarse-grained. According to the sorting values, 36.84% of the samples were categorized as moderately sorted to moderately well-sorted, whereas 63.15% of the samples were poorly sorted. Skewness values showed a wide range from -2.17 to 2.65 suggesting a mixed population of coarse and fine skewed sediments. Kurtosis ranged from -2.46 to 2.97, showed situation of both leptokurtic and platykurtic. Bivariate plots created employing various textural parameters suggested predominantly fluvial origin with very few deviations. This interpretation is further supported by linear discriminant function analysis, which indicates a fluvial to shallow marine depositional setting for most samples. The study represents an initial attempt to appraise the vertical and lateral variability of the Orangi Sandstone using cement composition and textural parameters; skewness and kurtosis. The studied samples significantly reflect the impact of Upper Oligocene Period's tectonics, climate shift, and sea level fluctuations, and sediment transport dynamics. A model is constructed to describe the preponderant fluvial environment outlining the role of beach and tidal processes along with fluvial channels in the deposition of the sandstone.

References

1. D. Liu, Z. Gu, R. Liang, J. Su, D. Ren, B. Chen, and C. Yang. Impacts of pore-throat system on fractal characterization of tight sandstones. Geofluid 2020(1): 4941501 (2020).

2. J.E. Houghton, J. Behnsen, R.A. Duller, T.E. Nichols, and R.H. Worden. Particle size analysis: A comparison of laboratory-based techniques and their application to geoscience. Sedimentary Geology 464: 106607 (2024).

3. R. Khalil. Investigating the depositional environments using particle-size analysis of Lower Cretaceous sandstone reservoirs, Biyadh Formation, Saudi Arabia. Journal of Taibah University for Science 18(1): 1-9 (2024).

4. C.A. Allen, I.G. Udo, T.A. Harry, and A.E. Ekot. Granulometric and Pebble Morphometric Analyses of Sandstone Lithofacies of the Ameki Formation in Northeastern Part of Akwa Ibom State, Niger Delta, Nigeria. Researchers Journal of Science and Technology 4(1): 32-44 (2024).

5. A. Khan, U. Khadim, and S. Anjum. Assessment of Orangi Sandstone Unit of Nari Formation, Karachi: Industrial Applications with Special Focus on Glass Making. International Journal of Ground Sediment & Water 7 (1): 365-380 (2018).

6. G. Wang, Q. Lei, Z. Huang, G. Liu, Y. Fu, N. Li, and J. Liu. Genetic Relationship between Mississippi Valley-Type Pb–Zn Mineralization and Hydrocarbon Accumulation in the Wusihe Deposits, Southwestern Margin of the Sichuan Basin, China. Minerals 12(11): 1447 (2022).

7. R.M. Abraham-A, F. Taioli, and A.I. Nzekwu. Physical properties of sandstone reservoirs: Implication for fluid mobility. Energy Geoscience 3(4): 349-359 (2022).

8. M.T. Sohail, A. Hussan, M. Ehsan, N. Al-Ansari, M.M. Akhter, Z. Manzoor, and A. Elbeltagi. Groundwater budgeting of Nari and Gaj formations and groundwater mapping of Karachi, Pakistan. Applied Water Science 12(12): 267 (2022).

9. Y. Yan, L. Zhang, X. Luo, K. Liu, B. Yang, and T. Jia. Simulation of ductile grain deformation and the porosity loss predicted model of sandstone during compaction based on grain packing texture. Journal of Petroleum Science and Engineering 208 (1): 109583 (2022).

10. N.K. Siddiqui (Ed.). Petroleum Geology, Basin Architecture and Stratigraphy of Pakistan. Nusrat K. Siddiqui (2016).

11. S.M.I. Shah. Stratigraphy of Pakistan. Volume 22. Geological Survey of Pakistan (2009). https://hostnezt.com/cssfiles/geology/STRATIGRAPHY%20OF%20PAKISTAN%20BY%20S.M.%20IBRAHIM%20SHAH.pdf

12. G. Li, C. Qi, Y. Sun, X. Tang, and B. Hou. Experimental Study on the Softening Characteristics of Sandstone and Mudstone in Relation to Moisture Content. Shock and Vibration 14(1): 4010376 (2017).

13. J. Alali. Mineral Processing of Silica Sand in Hanout Area South of Jordan. Open Journal of Geology 13(7): 667-696 (2023).

14. C. Zoramthara, V.Z. Ralte, and Lalramdina. Grain-size analysis of Tipam sandstones near Buhchang village, Kolasib district, Mizoram. Science Vision 15(Supplementary issue): 43-51 (2015).

15. R. Khalil. Grain-Size Analysis of Middle Cretaceous Sandstone Reservoirs, the Wasia Formation, Riyadh Province, Saudi Arabia. Sustainability 15(10): 7983 (2023).

16. S.A. Khan, Z. Saeed, A. Khan, G. Hamid, and S.W. Haider. Assessment of Soil Liquefaction Potential in Defence Housing Authority, Karachi, Pakistan. International Journal of Economic and Environmental Geology 8(2): 63-68 (2017).

17. I.B. Kadri (Ed.). Petroleum Geology of Pakistan. Pakistan Petroleum Limited (1995).

18. Z. Ahmed, A. Khan, and B. Ahmed. Sandstone Composition and Provenance of the Nari Formation, Central Kirthar Fold belt, Pakistan. Pakistan Journal of Geology 4(2): 90-96 (2020).

19. R.L. Folk (Ed.). Petrology of Sedimentary Rocks. Austin, Hemphill Publishing Company (1956).

20. R.L. Folk and W.C. Ward. Brazos River Bar: A Study in the Significance of Grain Size Parameters. Journal of Sedimentary Research 27(1): 3-26 (1975).

21. Y. Shi, E. Chongyi, Z. Zhang, Q. Peng, J. Zhang, W. Yan, and C. Xu. Comparison and significance of grain size parameters of the Menyuan loess calculated using different methods. Open Geosciences 15(1): 20220474 (2023).

22. O.A. Boboye, O.K. Jaiyeoba, and E.E Okon. Characteristics and mineralogical studies of some Cretaceous sandstones in Nigeria: implications for depositional environment and provenance. Journal of sedimentary Environments 6(4): 531-550 (2021).

23. H.L. Brooks, E. Steel, and M. Moore. Grain Size Analysis of Ancient Deep-Marine Sediments using Laser Diffraction. Frontiers in Earth Science 10: 820866 (2022).

24. G. Li, R. Du, J. Tang, Z. Li, Q. Xia, B. Shi, L. Zhou, Y. Yang, and W. Zhang. Comparison of the graphic and moment methods for analyzing grain-size distributions: A case study for the Chinese inner continental shelf seas. International Journal of Sediment Research 37(6): 729-736 (2022).

25. M. Roem, M. Musa, and Y. Risjani. Sediment dynamics and depositional environment on Panjang Island reef flat, Indonesia: insight from grain size parameters. Aquaculture, Aquarium, Conservation & Legislation 14(1): 357-370 (2021).

26. G.O. Aigbadon, A. Ocheli, O.C. Akakuru, E.O. Akudo, S.D. Christopher, O. Esharive, and J.A Francis, Paleoenvironments and hydrocarbon reservoir potentials from the selected sedimentary basins in Nigeria using sedimentary facies and textural analyses. Journal of Sedimentary Environments 7 (3): 371-401(2022).

27. O.S. Ayodele and H.Y. Madukwe. Granulometric and Sedimentologic Study of Beach Sediments, Lagos, Southwestern Nigeria. International Journal of Geosciences 10(3): 295-316 (2019).

28. A.D. Miall (Ed.). The geology of fluvial deposits: Sedimentary facies, basin analysis and petroleum geology. Springer (1996).

29. S.A. Kasim, M.S. Ismail, and N. Ahmed. Grain size statistics and morphometric analysis of Kluang-Niyor, Layang-Layang, and Kampung Durian Chondong Tertiary Sediments, Onshore Peninsular Malaysia: Implications for paleoenvironment and depositional processes. Journal of King Saud University-Science 35(2): 102481 (2023).

30. H. Azidane, B. Michel, M.E. Bouhaddioui, S. Haddout, B. Magrane, and A. Benmohammadi. Grain size analysis and characterization of sedimentary environment along the Atlantic Coast, Kenitra (Morocco). Marine Georesources & Geotechnology 39(5): 569-576 (2021).

31. T.J. Arun, K.R. Prasad, T.D. Aneesh, A.T. Limisha, M.K. Sreeraj, and R. Srinivas. Studies on the Textural Characteristics of Sediments from Periyar River Basin, Kerala, Southern India. International Journal of Applied Environmental Sciences 14(5): 495-526 (2019).

32. R.A. Mir and G.H. Jeelani. Textural characteristics of sediments and weathering in the Jhelum River basin located in Kashmir Valley, western Himalaya. Journal of the Geological Society of India 86: 445-458 (2015).

33. R.L. Folk. A review of grain‐size parameters. Sedimentology 6(2): 73-93 (1966).

34. E.A. Elsherif, A. Badawi, and T. Abdelkader. Grain size distribution and environmental implications of Rosetta beach, Mediterranean Sea coast, Egypt. Egyptian Journal of Aquatic Biology & Fisheries 24(1): 349-370 (2020).

35. M.S. Samtio, A.A.A.D. Hakro, R.A. Lashahri, A.S. Mastoi, R.H. Rajper, and M.H. Agheem. Depositional Environment of Nari Formation from Lal Bagh Section of Sehwan Area, Sindh Pakistan. Sindh University Research Journal 53(01): 67-76 (2021).

36. Q. Zhang, Y. Wang, X. Wang, H. Yang, and T. Wang. Grain-size characteristics and sedimentary environmental significance of terrestrial red sandstone in the Dongying Depression with a gentle slope zone. Bulletin of Geological Science and Technology 43(5): 81-94 (2024).

37. S. Mishra, R.N. Hota, and B. Nayak. Grain size analysis and an overview of the sedimentary processes in Chandrabhaga beach, east coast of India. Arabian Journal of Geosciences 17(7): 214 (2024).

38. R.J. Moiola and D. Weiser. Textural parameters; an evaluation. Journal of Sedimentary Research 38(1): 45-53 (1968).

39. J.A. Adeoye, V.O. Jolayemi, and S.O. Akande. Sedimentology and foraminiferal paleoecology of the exposed Oligocene–Miocene Ogwashi-Asaba Formation in Issele-Uku area, Anambra Basin, southern Nigeria: A paleoenvironmental reconstruction. Journal of Palaeogeography 11(4): 618-628 (2022).

40. C. Baiyegunhi, K. Liu, and O. Gwavava. Grain size statistics and depositional pattern of the Ecca Group sandstones, Karoo Supergroup in the Eastern Cape Province, South Africa. Open Geosciences 9(1): 554-576 (2017).

41. B.K. Sahu. Depositional Mechanisms Form the Size Analysis of Clastic Sediments. Journal of Sedimentary Petrology 34 (1): 73-83 (1964).

42. J.L. Welcomme, M. Benammi, J.Y. Crochet, L. Marivaux, G. Métais, P.O Antoine, and I. Baloch. Himalayan Forelands: palaeontological evidence for Oligocene detrital deposits in the Bugti Hills (Balochistan, Pakistan). Geological Magazine 138 (4): 397-405 (2001).

43. H.B. Stewart. Sedimentary Reflections of Depositional Environments in San Miguel Lagoon, Baja California, Mexico. American Association of Petroleum Geologists Bulletin 42(11): 2567-2618 (1958).

44. A.M. Lukman, R. Ayuba, and T.S. Alege. Sedimentology and depositional environments of the Maastrichtian Mamu Formation, Northern Anambra Basin, Nigeria. Advances in Applied Science Research 9(2): 53-68 (2018).

45. P. Parthasarathy, G. Ramesh, S. Ramasamy, T. Arumugam, P. Govindaraj, S. Narayanan, and G. Jeyabal. Sediment dynamics and depositional environment of Coleroon river sediments, Tamil Nadu, Southeast coast of India. Journal of Coastal Sciences 3(2):1-7 (2016).

46. M. Mehmood, A.A. Naseem, M. Saleem, J.U. Rehman, G. Kontakiotis, H.T. Janjuhah, and S.M. Siyar. Sedimentary Facies, Architectural Elements, and Depositional Environments of the Maastrichtian Pab Formation in the Rakhi Gorge, Eastern Sulaiman Ranges, Pakistan. Journal of Marine Science and Engineering 11(4): 726 (2023).

47. K.M. Farrell, W.B. Harris, D.J. Mallinson, S.J. Culver, S.R. Riggs, J. Pierson, J.M. Self-Trail, and J.C. Lautier. Standardizing Texture and Facies Codes for a Process-Based Classification of Clastic Sediment and Rock. Journal of Sedimentary Research 82(6): 364-378 (2012).

48. C. Zou, L. Wang, S. Tao, L. Hou, and A.J. Van Loon. Debrite turbidite transitions in the Chang 6 Oil Member of the Yanchang Formation (Ordos Basin, China). In: The Ordos Basin. R. Yang and A.J. Van Loon (Eds.). Elsevier pp. 411-420 (2022).

49. E.E. Hiatt. Sedimentology and sequence stratigraphy in basin analysis and paleohydrologic studies. In: Fluids and Basin Evolution. K. Kyser (Eds.). Mineralogical Association of Canada, Ottawa pp.19-38 (2000).

50. X. Sun, E. Gomez‐Rivas, D. Cruset, J. Alcalde, D. Muñoz‐López, I. Cantarero, and A. Travé. Origin and distribution of calcite cements in a folded fluvial succession: The Puig‐reig anticline (south‐eastern Pyrenees). Sedimentology 69(5): 2319-2347 (2022).

51. E.F. McBride. Quartz cement in sandstones: A review. Earth-Science Reviews 26(1-3): 69-112 (1989).

52. H.G. Reading (Ed.). Sedimentary Environments: Processes, Facies, and Stratigraphy Blackwell Science Ltd. (1996).

53. S. Hossain, H. Shekhar, and N. Rahman. Facies and architectural element analysis of the Upper Bokabil Sandstone in the Bengal Basin. Sedimentary Geology 453: 106433 (2023).

54. M. Yoshida and Y. Hamano. Pangea breakup and northward drift of the Indian subcontinent reproduced by a numerical model of mantle convection. Scientific Reports 5(1): 8407 (2015).

55. Z.F.M. Burton, T. McHargue, C.H. Kremer, R.B. Bloch, J.T. Gooley, C. Jaikla, J. Harrington, and S.A. Graham. Peak Cenozoic warmth enabled deep-sea sand deposition. Scientific Reports 13(1): 1276 (2023).

56. M. Umar, H. Friis, A.S. Khan, G. Kelling, A.M. Kassi, M.A. Sabir, and M. Farooq. Sediment Composition and Provenance of the Pab Formation, Kirthar Fold Belt, Pakistan: Signatures of Hot Spot Volcanism, Source Area Weathering, and Paleogeography on the Western Passive Margin of the Indian Plate during the Late Cretaceous. Arabian Journal for Science and Engineering 39: 311-324 (2014).

57. A.H. Kazmi and M.Q. Jan. (Eds.) Geology and Tectonics of Pakistan. Graphic Publishers (1997).

58. A.H. Kazmi and I.A. Abbasi (Eds.). Stratigraphy and Historical geology of Pakistan. Department & National Centre of Excellence in Geology, Peshawar, Pakistan (2008).

59. M. Paryal, M.H. Agheem, G. Hussain, M.A. Kalwar, M. Hussain, and H. Asghar. Petrography of upper Nari Formation, Gandri Jabal, Pakistan. North American Academic Research 3(5): 178-199 (2020).

Downloads

Published

2025-06-06

How to Cite

Bashir, E., Khaleeq, S., Naseem, S., Kaleem, M., Shumail, M., & Ahmed, W. (2025). Granulometry based Extrapolation of Depositional Environment of Orangi Sandstone, Nari Formation Exposed around Hub Dam, Pakistan. Proceedings of the Pakistan Academy of Sciences: A. Physical and Computational Sciences, 62(2), 149–164. https://doi.org/10.53560/PPASA(62-2)879

Issue

Section

Research Articles

Similar Articles

<< < 3 4 5 6 7 8 9 > >> 

You may also start an advanced similarity search for this article.