Systematic Augmentation of Artoolkit Markers for Indoor Navigation and Guidance

Systematic Augmentation of ARToolkit Markers for Indoor Navigation and Guidance

Authors

  • Sehat Ullah Department of Computer Science & Information Technology, University of Malakand, Dir (L), Pakistan.
  • Inam ur Rahman Department of Computer Science & Information Technology, University of Malakand, Dir (L), Pakistan.
  • Sami ur Rahman Department of Computer Science & Information Technology, University of Malakand, Dir (L), Pakistan

Keywords:

Augmented Reality, Indoor Navigation, Fiducial Marker

Abstract

Augmented Reality (AR) has been deployed in various fields like engineering, medical, gaming, and academic. It has also been utilized for user navigation in large indoor environments. In this study, we present a path generation algorithm that automatically identifies fiducial markers in the building to create a path for user navigation. Path augmentation algorithm adds auditory and textual information to the generated path for user assistance. We implement the algorithms in an android application and its internal mechanism for database creation and guidance system is discussed.

References

Dunleavy, M. C. Dede, & R. Mitchell. Affordances and Limitations of Immersive Participatory Augmented Reality Simulations for Teaching and Learning, Journal of Science Education and Technology, 18(1): 7-22 (2009).

Aloor, J., J. Sahana, P. S. Seethal, S. Thomas, S. & M. T. R. Pillai. Design of VR headset using augmented reality. International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), IEEE 3540-3544 (2016).

bin Abdul Malek, M.F., Sebastian, P. & M. Drieberg. Augmented reality assisted localization for indoor navigation on embedded computing platform. EEE International Conference on Signal and Image Processing Applications (ICSIPA), IEEE, 111-116 (2017).

T. Costa et al., Indoor venues are the next frontier for location-based services, ed: Jan, (2013).

Coelho, P., A. Aguiar, & J. C. Lopes. OLBS: Offline Location Based Services, Fifth International Conference on Next Generation Mobile Applications, Services and Technologies, IEEE: 70-75 (2011).

S. Panzieri, F. Pascucci, & G. Ulivi. An outdoor navigation system using GPS and inertial platform.IEEE/ASME transactions on Mechatronics, 7(2):134-142 (2002).

Ozdenizci, B, K. Ok, V. Coskun, & M. N. Aydin. Development of an Indoor Navigation System Using NFC Technology, Fourth International Conference on Information and Computing, IEEE 11-14 (2011).

Mehta, P., P. Kant, Shah, & A. K. Roy. VI-Navi: a novel indoor navigation system for visually impaired people. Proceedings of the 12th International Conference on Computer Systems and Technologies, ACM: 365-371 (2011).

Yelamarthi, K., D. Haas, D. Nielsen, & S. Mothersell. RFID and GPS integrated navigation system for the visually impaired. 53rd IEEE International Midwest Symposium on Circuits and Systems, IEEE. 149-1152 (2010).

Blattner, A., Y. Vasilev, & B. Harriehausen- Mühlbauer, Mobile Indoor Navigation Assistance for Mobility Impaired People, Procedia Manufacturing, 3: 51-58 (2015).

Mautz, R. Indoor positioning technologies, Doctoral dissertation, Dept. Civil, Environ. Geomatic Eng., Inst. Geodesy Photogramm., ETH Zurich, Zurich (2012).

Levchev, P., M. N. Krishnan, C. Yu, J. Menke, & A. Zakhor, Simultaneous fingerprinting and mapping for multimodal image and WiFi indoor positioning. International Conference on Indoor Positioning and Indoor Navigation (IPIN), IEEE, 442-450 (2014).

Doush, I. A., S. Alshatnawi, A. K. Al-Tamimi, B. Alhasan, & S. Hamasha. ISAB: integrated indoor navigation system for the blind. Interacting with Computers, 29(2): 181-202 (2016).

Rabbi, I., S. Ullah, & A. Alam. Marker based tracking in augmented reality applications using ARToolkit: a case study. Journal of Engineering and Applied Sciences, 34(1): (2015).

Fiala, M., ARTag, a fiducial marker system using digital techniques. IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), IEEE. 590-596 (2005).

Lamb P. “Artoolkit home page” Internet: http://www.hitl.washington.edu/artoolkit, (2007). Accessed on July, (2019).

La Delfa, G. C. & V. Catania. Accurate indoor navigation using smartphone, bluetooth low energy and visual tags. Proceedings of the 2nd Conference on Mobile and Information Technologies in Medicine, (2014).

Wagner, D. & D. Schmalstieg, ARToolKitPlus for Pose Tracking on Mobile Devices, 12th Computer Vision Winter Workshop (CVWW’07), Sankt Lambrecht, Austria (2007).

Kjærgaard, M. B., H. Blunck, T. Godsk, T. Toftkjær, D. L. Christensen, & K. Grønbæk. Indoor positioning using GPS revisited. International conference on pervasive computing, Springer. 38-56 (2010).

Mulloni. A, H. Seichter, & D. Schmalstieg. Handheld augmented reality indoor navigation with activity-based instructions. Proceedings of the 13th international conference on human computer interaction with mobile devices and services, ACM. 211-220 (2011).

Lo, C.-C. A., T.C. Lin, Y.C. Wang, L.C. Tseng, L.C. Ko, & Y.C. Kuo. Using intelligent mobile devices for indoor wireless location tracking, navigation, and mobile augmented reality. IEEE VTS Asia Pacific Wireless Commun. Symposium (APWCS), (2010).

Cavallo, F., A. M. Sabatini, & V. Genovese. A step toward GPS/INS personal navigation systems: realtime assessment of gait by foot inertial sensing. IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE. 1187-1191 (2005).

Attia, M., A. Moussa, & N. El-Sheimy. Map aided pedestrian dead reckoning using buildings information for indoor navigation applications. Positioning. 4(03): 227 (2013).

Kasprzak, S., A. Komninos, & P. Barrie. Featurebased indoor navigation using augmented reality. 9th international conference on intelligent environments, IEEE. 100-107 (2013).

Huey, L. C., P. Sebastian, & M. Drieberg. Augmented reality based indoor positioning navigation tool. IEEE Conference on Open Systems, IEEE. 256-260 (2011).

Kim, J. & H. Jun. Vision-based location positioning using augmented reality for indoor navigation. IEEE Transactions on Consumer Electronics. 54(3): 954- 962 (2008).

Kalkusch, M., T. Lidy, N. Knapp, G. Reitmayr, H. Kaufmann, & D. Schmalstieg. Structured visual markers for indoor pathfinding. The First IEEE International Workshop Agumented Reality Toolkit, IEEE. 8 (2002).

Zeb, A., S. Ullah, & I. Rabbi. Indoor visionbased auditory assistance for blind people in semi controlled environments. 4th International Conference on Image Processing Theory, Tools and Applications (IPTA), IEEE, 1-6 (2014).

Al-Khalifa S. & M. Al-Razgan. Ebsar: Indoor guidance for the visually impaired. Computers & Electrical Engineering, 54: 26-39 (2016).

Garrido-Jurado, S., R. Muñoz-Salinas, F. J. Madrid-Cuevas, & M. J. Marín-Jiménez, Automatic generation and detection of highly reliable fiducial markers under occlusion, Pattern Recognition. 47(6): 2280-2292 (2014).

ShahSani, R.K., S. Ullah, & S. U. Rahman. Automated Marker Augmentation and Path Discovery in Indoor Navigation for Visually Impaired. International Conference on Augmented Reality, Virtual Reality and Computer Graphics. Springer, Cham. 427-437, (2017).

Dijkstra, E. W. A note on two problems in connexion with graphs. Numerische Mathematik, 1(1): 269-271 (1959).

Downloads

Published

2021-03-31

How to Cite

Ullah, S. ., Rahman, I. ur ., & Rahman, S. ur. (2021). Systematic Augmentation of Artoolkit Markers for Indoor Navigation and Guidance: Systematic Augmentation of ARToolkit Markers for Indoor Navigation and Guidance. Proceedings of the Pakistan Academy of Sciences: A. Physical and Computational Sciences, 56(1), 1–8. Retrieved from http://ppaspk.org/index.php/PPAS-A/article/view/145

Issue

Section

Articles