Path Loss Model for Future Terahertz (THz) Wireless Communication Systems

Path Loss Model for Future Terahert z Wireless Communication Systems

Authors

  • Sabir Shah Department of Electrical Engineering, University of Engineering and Technology, Peshawar, Pakistan
  • Majid Ashraf Department of Electrical Engineering, University of Engineering and Technology, Peshawar, Pakistan
  • Nasir Saeed Department of Electrical Engineering, King Abdullah University of Science and Technology, Thuwal, Makkah, Saudi Arabia
  • Tariqullah Jan Department of Electrical Engineering, University of Engineering and Technology, Peshawar, Pakistan
  • Ruhulamin Khalil Department of Electrical Engineering, University of Engineering and Technology, Peshawar, Pakistan
  • M. Inayatullah Babar Department of Electrical Engineering, University of Engineering and Technology, Peshawar, Pakistan
  • Gulzar Ahmad Department of Electrical Engineering, University of Engineering and Technology, Peshawar, Pakistan
  • Syed Waqar Shah Department of Electrical Engineering, University of Engineering and Technology, Peshawar, Pakistan

Keywords:

THz, Multipath propagation, Ray-tracing, Transfer function, Cosine law, Refractive index

Abstract

Terahertz (THz) band is visualized to alleviate the capacity limitation and spectrum scarcity of the current wireless communication system. One of the major constraints for the realization of THz wireless communication is the high path loss. Terahertz band wireless communication have a very high molecular absorptions well as molecular noise generated by water vapor in response to attenuation of electromagnetic radiation that have a very high path loss propagation. Besides molecular losses communication in the terahertz spectrum has also spreading losses like reflection and scattering losses. Taking into account all these peculiarities of the terahertz radiation a proposed channel model based on ray approach is designed that accounts for terahertz wave propagation. An equivalent path loss model for terahertz multipath propagation based on ray tracing approach is developed and corroborated with the existing experimental results.

References

Nagatsuma, T. (2015, August). Terahertz communications: Past, present and future.,40th IEEE International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), pp.1-2 (2015).

Forecast, C.V., Cisco visual networking index: Global mobile data traffic forecast update 2009-2014, Cisco Public Information, 9 (2010).

Piesiewicz, R., T. Kleine-Ostmann., N. Krumbholz., D. Mittleman., M. Koch., J. Schoebei, & T. Kurner,, Short-range ultra-broadband terahertz communications: Concepts and perspectives., IEEE Antennas and Propagation Magazine, 49(6): 24-39 (2007).

Cherry, S., Edholm's law of bandwidth., IEEE Spectrum, 41(7): 58-60 (2004).

Weihao, Z., F. Lan., J. Xuan., P. Mazumder., M. Aghadjani., Z. Yang, & L. Men, Ultrasensitive dualband terahertz sensing with metamaterial perfect absorber, In Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), 2017 IEEE MTT-S International Microwave Workshop Series on, 1-3. IEEE, (2017).

Adnan. Z., K. Yang., H. Heidari., C. Li, M.A. Imran., A. Alomainy, & Q.H. Abbasi, Terahertz characterisation of living plant leaves for quality of life assessment applications, In 2018 Baltic URSI Symposium (URSI). IEEE, (2018).

Akyildiz, I. F., D.M. Gutierrez-Estevez., R. Balakrishnan, & E. Chavarria-Reyes, LTEAdvanced and the evolution to Beyond 4G (B4G) systems, Physical Communication, 10: 31-60 (2014).

Wu. K., J. Xiao, & L.M. Ni, Rethinking the architecture design of data center networks, Frontiers of Computer Science, 6(5): 596-603 (2012).

Katayama. Y., K. Takano., Y. Kohda., N. Ohba, & D. Nakano, Wireless data center networking with steered-beam mmwave links, IEEE Wireless Communications and Networking Conference (WCNC), 2179-2184 (2011).

Akyildiz, I.F., J.M. Jornet, & C. Han, Terahertz band: Next frontier for wireless communications., Physical Communication, 12: 16-32 (2014).

Kleine-Ostmann, T., & T. Nagatsuma, A review on terahertz communications research., Journal of Infrared, Millimeter, and Terahertz Waves, 32(2): 143-171 (2011).

Konrad, G, & Y. Yashchyshyn, Broadband characterization of dielectrics in sub-THz range, In 2018 22nd International Microwave and Radar Conference (MIKON). IEEE, (2018).

Moldovan, A., S. Kisseleff., I.F. Akyildiz, & W.H. Gerstacker, Data rate maximization for terahertz communication systems using finite alphabets, IEEE International Conference on Communications (ICC),1-7 (2016).

Danping, H., K. Guan, A. Fricke., B. Ai., R. He, Z. Zhong, A. Kasamatsu., I. Hosako, & T. Kürner. Stochastic channel modeling for kiosk applications in the terahertz band, IEEE Transactions on Terahertz Science and Technology 7(5):502-513 (2017).

Priebe, S., M. Jacob., C. Jansen, & T. Kürner, Nonspecular scattering modeling for THz propagation simulations, Proceedings of the 5th IEEE European Conference on Antennas and Propagation (EUCAP), 1-5 (2011).

Priebe, S., M. Kannicht., M. Jacob., & T. Kürner, Ultra-broadband indoor channel measurements and calibrated ray tracing propagation modeling at THz frequencies, Journal of Communications and Networks, 15(6): 547-558 (2013).

Armita, A., A. Davy., B. Jennings, & C. Brennan, An initial path-loss model within vegetation in the THz band, In Antennas and Propagation (EuCAP), 2015 9th European Conference on. IEEE pp, (2015).

Ke. G., B. Ai., B. Peng., D. He., X. Lin, L. Wang., Z. Zhong, & T. Kürner, Scenario modules, ray-tracing simulations and analysis of millimetre wave and terahertz channels for smart rail mobility, IET Microwaves, Antennas & Propagation, 12(4): 501-508 (2017).

Chong, H., J.M. Jornet, & I. Akyildiz, Ultra- Massive MIMO Channel Modeling for Graphene- Enabled Terahertz-Band Communications, In 2018 IEEE 87th Vehicular Technology Conference (VTC Spring), 1-5. IEEE, (2018).

Hadeel, E., M.R. Shubair., J.M. Jornet, & P. Johari, Terahertz channel model and link budget analysis for intrabody nanoscale communication, IEEE transactions on nanobioscience 16 (6) 491-503:(2017).

Piesiewicz, R., C. Jansen., D. Mittleman., T. Kleine- Ostmann., M. Koch, & T. Kurner, Scattering analysis for the modeling of THz communication systems, IEEE Transactions on Antennas and Propagation, 55(11): 3002-3009 (2007).

Jansen, C., S. Priebe., C. Moller., M. Jacob., H. Dierke., M. Koch, & T. Kurner, Diffuse scattering from rough surfaces in THz communication channels., IEEE Transactions on Terahertz Science and Technology, 1(2): 462-472.

Rothman, L.S., I.E. Gordon., A. Barbe., D.C. Benner., P.F. Bernath., M. Birk, & K. Chance, The HITRAN 2008 molecular spectroscopic database., Journal of Quantitative Spectroscopy and Radiative Transfer, 110(9-10): 533-572 (2009).

Beckmann, P, & A. Spizzichino, The scattering of electromagnetic waves from rough surfaces., Norwood, MA, Artech House, Inc., 511 (1987).

Vernold, C.L, & J.E. Harvey, Modified Beckmann- Kirchoff scattering theory for nonparaxial angles., International Society for Optics and Photonics: Scattering and Surface Roughness II, 3426: 51-57 (1998).

Piesiewicz, R., C. Jansen., D. Mittleman., T. Kleine- Ostmann., M. Koch, & T. Kurner, Scattering analysis for the modeling of THz communication systems, IEEE Transactions on Antennas and Propagation, 55(11): 3002-3009 (2007).

Molisch, A. F., Wireless communications., John Wiley & Sons., 34 (2012).

Marinier, P., G.Y. Delisle, & L. Talbi, A coverage prediction technique for indoor wireless millimeter waves system, Wireless Personal Communications, 3(3): 257-271 (1996).

Kandler, K., N. Benker., U. Bundke., E. Cuevas., M. Ebert., P. Knippertz, & S. Weinbruch, S, Chemical composition and complex refractive index of Saharan Mineral Dust at Izana, Tenerife (Spain) derived by electron microscopy, Atmospheric Environment, 41(37): 8058-8074 (2007).

Rappaport, T.S., J.N. Murdock, & F. Gutierrez, State of the art in 60-GHz integrated circuits and systems for wireless communications., Proceedings of the IEEE, 99(8): 1390-1436 (2011).

Sawada, H., K. Fujii., A. Kasamatsu, H. Ogawa., K. Ishizu, & F. Kojima, Path loss model at 300 GHz for indoor mobile service applications, IEICE Communications Express, 5(11): 424-428 (2016).

Afsharinejad, A. A. Davy, B. Jennings, S. Rasmann, & C. Brennan. "A path-loss model incorporating shadowing for THz band propagation in vegetation." In Global Communications Conference (GLOBECOM), 2015 IEEE, pp. 1-6. IEEE, (2015).

Downloads

Published

2021-03-29

How to Cite

Shah, S. ., Ashraf, M. ., Saeed, N. ., Jan, T. ., Khalil, R., Babar, M. I. ., Ahmad, G. ., & Shah, S. W. . (2021). Path Loss Model for Future Terahertz (THz) Wireless Communication Systems: Path Loss Model for Future Terahert z Wireless Communication Systems. Proceedings of the Pakistan Academy of Sciences: A. Physical and Computational Sciences, 56(2), 55–65. Retrieved from http://ppaspk.org/index.php/PPAS-A/article/view/130

Issue

Section

Editorial