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Abstract: We present a satellite-driven, four-year assessment of formaldehyde (HCHO) over Ahvaz that quantifies
its spatiotemporal variability, meteorological controls, and health risk. Using Sentinel-5P/TROPOMI (2019-2022)
together with MERRA-2/GLDAS/AIRS fields, we relate HCHO to co-pollutants (CO, NO2, SO2) and meteorology
(precipitation, temperature, wind speed, relative humidity, dew point) and map hotspots via IDW; health risks are
evaluated with RAIS. HCHO correlates positively with temperature (r = 0.92) and negatively with relative humidity (r
=-0.84) and precipitation (r = -0.65); the wind-speed link is moderately positive (r = 0.46), with primary co-pollutants
are weak (CO: r = 0.08; NOz: r = -0.02). Interannually, 2020 shows the highest HCHO and 2021 the lowest (annual
mean ~8% lower in 2021), with persistent hotspots along the southeastern industrial corridor. [UR-based lifetime
inhalation cancer risk peaks in 2020 at ~506 expected excess cases citywide and is lowest in 2021 at ~468. These
quantitative results highlight temperature-driven photochemistry and moisture-related removal as key controls on
HCHO and motivate strengthened air-quality management to mitigate exposure and protect public health in Ahvaz.

Keywords: Formaldehyde (HCHO), Air Pollutants, Meteorological Conditions, Sentinel-5P, Spatiotemporal, Health

Risk Assessment.

1. INTRODUCTION

Ahvaz has been identified as a critical area for air
quality research due to its high levels of various
pollutants, including Formaldehyde (HCHO), ozone
(O,), nitrogen dioxide (NOz), and sulfur dioxide
(SO2), and carbon monoxide (CO). The city’s
geographical and climatic conditions exacerbate
pollution levels, leading to severe health impacts
among residents. Notably, studies have shown
that exposure to these pollutants correlates with
increased hospital admissions for cardiovascular
diseases and respiratory issues [1-3]. Statistical
data indicate that, following Tehran and Isfahan,
Ahvaz ranks third in terms of air pollution levels in

Iran, and this condition is on a continuous upward
trajectory. Consequently, it is essential to examine
the trends of air pollutants in Ahvaz city. HCHO
represents a significant member of the aldehyde
family, prevalent in both indoor and outdoor
atmospheric environments. This compound is
critical for assessing atmospheric oxidation capacity
due to its toxic, irritating, and flammable properties
[4, 5]. Epidemiological studies investigating the
health impacts of HCHO have led the U.S. National
Toxicology Program and the International Agency
for Research on Cancer to classify this gas as a
potential contributor to leukemia [6]. HCHO is
primarily emitted from anthropogenic activities
such as vehicular emissions, industrial processes,
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and the use of certain household products. In urban
environments like Ahvaz, traffic-related emissions
are significant contributors to ambient HCHO
levels. Furthermore, photochemical reactions can
lead to secondary formation of HCHO from other
pollutants, complicating efforts to manage air
quality.

Existing research indicates that meteorological
parameters and precursor pollutants substantially
influence variations in atmospheric pollutant
concentrations, as well as the assessment of
associated health risks across different months
and seasons [7-9]. Borhani et al. [10] conducted
a pivotal study investigating the effects of fine
particulate matter (PM, ,) on air quality and public
health in Tehran, Iran, over a ten-year period
from 2011 to 2020. The research analyzed PM,
concentrations, the Air Quality Index (AQI),
and hospital admissions associated with chronic
obstructive pulmonary disease (COPD) linked to
PM, . exposure. The results revealed that reductions
in PM_ , levels can yield significant health benefits.
Another study examined both indoor and outdoor
concentrations of BTEX compounds in Tehran,
emphasizing how building characteristics can
influence exposure levels. This research suggests
that urban planning and building design could
mitigate exposure risks to these toxic pollutants
[11]. Dehghani et al. [12] conducted an evaluation
of HCHO concentrations in the ambient air of
Tehran, revealing significant levels that may pose
health risks. The results underscore the necessity for
immediate interventions to regulate emissions from
both industrial and vehicular sources to safeguard
public health. Hedayatzadeh and Hassanzadeh
[13] examined benzene, toluene, ethylbenzene,
and xylene (BTEX) compounds in Ahvaz’s urban
atmosphere, assessing their prevalence, sources,
and health risks. Their study underscored the health
threats posed by these VOCs, which contribute to
air pollution. The findings emphasizes the need for
effective air quality management in urban areas like
Ahvaz, highlighting the importance of monitoring
BTEX levels to mitigate health risks and guide
policy on emissions and traffic.

While the relationship between HCHO and
various atmospheric variables has been explored,
fewer studies have undertaken a comprehensive
assessment that simultaneously considers precursor
pollutants and a full suite of meteorological

conditions . This is particularly true for specific,
under-examined urban hotspots, where such detailed
analyses are crucial for developing effective,
localized mitigation strategies. Ahvaz, despite its
status as one of Iran’s most critical air pollution
centers, has been notably overlooked in existing
research. This study addresses this significant gap
by conducting a multi-faceted analysis of HCHO’s
spatiotemporal behavior in Ahvaz from 2019 to
2022 and systematically correlating it with key
atmospheric variables. Building upon this essential
groundwork, the paper’s primary contribution is the
quantification of direct public health consequences
using the RAIS framework. This approach not only
characterizes the pollutant’s dynamics in a high-
risk environment but also translates these findings
into tangible human health impacts, with results
presented at both urban and district scales.

2. MATERIALS AND METHODS
2.1. Study Area

Ahvaz (31°30'N and 48°65'E) serves as the
capital of Khuzestan province in southwestern
Iran, is divided into eight districts (Figure 1 and
Table 1). The city is situated on both banks of the
Karun River and is characterized by a low range
of sandstone hills. Covering an area of 318 square
kilometers, Ahvaz ranks among the largest cities
in Iran, holding the third position in terms of size,
following Tehran and Mashhad. Positioned within
the Khuzestan plains, the city is approximately
12 meters above sea level. The average annual
precipitation in Ahvaz ranges from 220 to 250
mm, with minimum temperatures recorded at 5
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Fig. 1. The location of the study area, (a) Iran, (b)
Khuzestan province, (c) Ahvaz city.
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Table 1. Population and area of Ahvaz city by Municipal districts.

N.[un-icipal Land use Area Population Popqlation
districts (Hectare) (People) density
| Including the central and historical parts of the city 1103 139427 126

2 Residential and commercial areas with access to urban facilities 2913 107274 36

3 Including industrial and economic areas 3181 176167 55

4 Residential areas with a focus on infrastructure development 2527 153313 61

5 Includes new neighborhoods and housing projects 2155 105477 49

6 Cultural and recreational areas 2111 165110 78

7 Marginal and less developed regions 1719 146218 85

8 Including special areas and large urban projects 3098 191802 62
Total 19494 1184788

C and maximum temperatures exceeding 40 °C.
The average relative humidity typically fluctuates
between 14% and 58%, while the average annual
wind speed is approximately 38 kilometers per hour.
Given its geographical and industrial significance,
Ahvaz plays a crucial role in the economic and
industrial landscape of the country.

2.2. Datasets and Preparation

2.2.1. Sentinel-5P (TROPOMI) data retrieval and
preparation

Spatio-temporal maps of HCHO concentrations
and other air pollutants (CO, NO,, O,, SO,) are
instrumental in identifying emission hotspots and
assessing the effectiveness of pollution mitigation
strategies over time. (The units for HCHO, CO,
NO-, and SO: are given as vertical column density
(VCD) in mol m™2, while Os is measured as total
column density in Dobson Units (DU). This study
analyses the average daily total air pollutants column
density obtained from the Sentinel-5P satellite,
specifically utilizing the TROPOMI (Tropospheric
Monitoring Instrument Sentinel-5 Precursor)
HCHO monitoring instrument, accessible through
the Google Earth Engine (GEE) cloud platform
[14]. We wused Level-2 OFFL products and
retained only pixels with (qa_value > 0.5.) The
data spans from January 1, 2019, to December
31, 2022, covering a four-year period. TROPOMI
operates with a spectral resolution ranging from
0.25 to 0.55 nanometre (nm) and provides global
daily coverage with a spatial resolution of 5.5 x
3.5 km, (commonly reported as ~3.5 x 5.5 km at
nadir). Following the acquisition and importation

of the data into Quantum GIS (QGIS), the Inverse
Distance Weighting (IDW) method was employed
to generate monthly HCHO (total column) maps
[15].

In addition, for subsequent health risk assessment
(RAIS), HCHO needs to be expressed as volumetric
concentration (ug m). Therefore, the satellite-
retrieved VCD of HCHO (VCD, mol m™2) was
converted to volumetric concentration using the
following relation:

Cimory X Molar mass ; g
(52 o)

x 108
(1

Where, C denotes the HCHO (mol.m?) and the
molar mass of HCHO is 30.026 g.mol". In general,
the denominator H represents the planetary
boundary layer height (PBLH). In this study, for
simplicity, we assume H = 1000 (m), which is a
reasonable approximation.

Concentmtion(original)(%) = Hm)

2.2.2. Data collection of meteorological parameters
using the NASA Giovanni

Meteorological parameter (i.e., total precipitation
rate (PR), surface air temperature (T), relative
humidity (RH), surface wind speed (WS), dew
point temperature (DWP)) data were sourced
from the MERRA-2, GLDAS, and AIRS satellite
models through the Giovanni platform (Table
2). The Giovanni platform functions as an online
interactive geographic visualization tool, facilitated
by NASA’s Goddard Earth Science Data and
Information Service (GES DISC) [16, 17].
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2.2.3. Health risk assessment

The RAIS is a comprehensive tool developed
under the supervision of the U.S. Department of
Energy (DOE) since 1996. It serves as a resource
for assessing environmental risks, particularly
concerning pollutants like HCHO. The system
focuses on various dimensions of exposure,
including contact duration, application duration, and
contact frequency, which are critical for evaluating
how individuals interact with hazardous substances
[18]. In RAIS terminology, CDI (Chronic Daily
Intake) denotes a dose normalized by body weight
and time (typically pg -kg'-day™).

To assess CDI of a pollutant, RAIS utilizes
specific formulas based on the type of exposure.
The CDI can be calculated in two primary ways:
Contact CDI: This is expressed in % and
considers the duration and frequency of exposure
(Equation 2). In practice, Eq. (2) provides a time-
averaged ambient concentration used later as the
concentration term in the [UR-based risk (Eq. 4).

Inhalation CDI: For inhalation exposure, the
pollutant concentration in the air is measured in
ug/m3. This approach specifically addresses the
risks associated with airborne pollutants (Equation
3). In Eq. (3), CDI is a dose-based quantity
(mg-kg'-day™) that uses breathing rate and body
weight.

C(L%) X ED{days)

CDI yg =—"—————— 2
{ﬁ] AT{days) ( )

C{E} X ED[days] X BR m2
cpI ™ @0y (3
ug =
(kg-day Bw(kg) X AT(days)

Where, C and ED are the concentration and
exposure duration, 47 is the average human lifespan
(typically considered to be 70 years for cancer risk
assessments), BR is the breathing rate, and BW is
the average body weight (often considered to be
around 70 kg (approximately 154 lbs) for adults).

2.2.3.1. Cancer risk assessment
Cancer risk assessment involves evaluating the

likelihood of developing cancer based on various
factors, including exposure to carcinogens. The

methodology typically incorporates concepts such
as cancer slope factors and respiratory risk units,
which are often linear and suggest that there is
no safe threshold for exposure-meaning even the
lowest concentration of a carcinogen can increase
cancer risk.

The following equation is used to calculate the
cancer risk associated with exposure to a specific
carcinogen.

Hg Hg

Risk (unitless) = CDI (ﬁ) x IUR (E)_1(4)

Risk (unitless) = CDI ( i ) X CS g

-1
kg.day F (kg. day) ®)

The Inhalation Unit Risk (IUR) is a measure
of the potency of the carcinogen. It represents the
upper-bound probability of an individual developing
cancer as a result of continuous exposure to the

carcinogen at a concentration of 1 fin air over a

3
lifetime. The IUR is expressed as the inverse of the
concentration (£Z - Also, Cancer Slope Factor
(CSF) is a toxicological measure that quantifies
the risk of cancer associated with exposure to a
carcinogen. It is expressed in units of risk per unit of
exposure (5 ;fay)_l. The CSF indicates the increase
in cancer risk per unit of CDI and is specific to each

carcinogen [19, 20].

2.2.4. Matrix heatmap of data

Heatmaps function as ahighly effective visualization
instrument that is particularly useful for representing
data organized in a matrix format. This technique
employs variations in color to illustrate different
values within the dataset. In the context of this study,
this visualization method was specifically applied
to clarify the relationship between concentrations
of HCHO, other air pollutants (CO, NO,, O,, SO,)
and various meteorological parameters observed
from the years 2019 to 2022. The heatmaps
utilized in this research were created through the
use of the seaborn heatmap functionality available
in Python, which relies on the capabilities of the
NumPy library to facilitate the data processing and
visualization [21].

3. RESULTS AND DISCUSSION

The monthly average of air pollutants concentrations
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and meteorological variables from 2019 to 2022 in
Ahvaz city is presented in Appendix, Table A.

3.1. Temporal and Spatial Variation of the
HCHO and other Air Pollutants (CO, NO,, O,,
SO,

2

This study examines the atmospheric pollutants
concentrations in Ahvaz city. The measured HCHO
concentrations throughout the four-year study
period consistently fall below the standard parts per
billion (ppb) threshold and remain within acceptable
limits across all months (Table 3). Figure 2 shows
the spatial distribution of the average annual
values of the Sentinel-5P total column density of
HCHO (%) in Ahvaz city from January 1, 2019 to

m?2

December 31, 2022.

The maximum and minimum monthly average
values of total HCHO were recorded in August at
0.000249583 :’:f and in January at 0.000084235 Tn—f
respectively (Table 3). Overall, HCHO emissions
exhibit seasonal variability, with concentrations
generally higher in summer than in winter [22]. In

unpolluted outdoor air, HCHO concentrations are

Fig. 2. The spatial distribution of the average annual
concentrations of HCHO in Ahvaz, Iran from 2019 to
2022.

typically below 1 ppb, whereas urban environments
have reported concentrations ranging from 1 to 25
ppb [23, 24]. This study has indicated that regions 3,
6, 7, and 8 experience the highest levels of HCHO
emissions. This situation raises significant public
health concerns, necessitating targeted interventions
to improve air quality in these areas. The high
emissions can be attributed to factors such as
urbanization, industrial activities, and traffic density,
which are prevalent in these regions (Table 1).

The total CO concentration reached its peak
in region 8 during the period from 2019 to 2021,
while region 1 exhibited the highest level in 2022
(Figure 3(a-c)). In Ahvaz, the maximum average
CO concentration was recorded in August, whereas
the minimum was noted in November (Figure
3(d)). The highest average concentration of NO, in
Ahvaz was recorded in January, while the lowest
concentration occurred in April. These findings
underscore the significance of seasonal changes on
air quality in Ahvaz. The data indicates that both CO
and NO, levels are influenced by meteorological
conditions, traffic patterns, and seasonal activities.
The total O, concentration is greatest in regions 2,

I
35.391
’ ‘y\\
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34339

dcrmatney
0153 6 9
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Fig. 3. The spatial distribution of the average annual
concentrations of CO and NO, in Ahvaz, Iran from 2019
to 2022.
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5, and 6, while the highest concentration of SO: is
observed in region 8 (Figure 4). Figure 4 shows
persistent spatial gradients: Os remains higher over
the northwest—central districts and lower toward
the southeast in all four years, with a slight citywide
increase from 2019 to 2022. In contrast, SO:
displays stronger spatial contrasts with recurrent
hotspots in the eastern/southeastern industrial
corridor (notably region 8) and comparatively lower
values in the northwest. Year-to-year variability is
larger for SO: than for Os, consistent with episodic
emission/stack operations. These patterns suggest
regionally driven photochemistry and NOx titration
for Os, versus more local combustion/industrial
sources for SO..

3.2. Statistical Associations between HCHO,
Meteorology, and Co-Pollutants

Figure 5 summarizes the co-variation between
meteorology and pollutants. The HCHO-

temperature linkage is very strong (r=0.92; see also
Figure. 6(a)), consistent with temperature-driven
VOC emissions, faster photochemistry, and a deeper
daytime boundary layer that sustains secondary
carbonyl formation; this pattern matches earlier

Fig. 4. The spatial distribution of the average annual
concentrations of O, and SO, in Ahvaz, Iran from 2019
to 2022.

satellite evidence for warm-season enhancement
[25, 26]. In contrast, relative humidity shows a
pronounced negative association with HCHO (r =
-0.84; Figure 6(b)): higher RH generally promotes
wet removal/aqueous uptake and reduces actinic
flux, both of which diminish HCHO [27]. A similar
damping appears for precipitation (PP) (r = -0.65),
reflecting washout and cloud shielding [27].

Wind acts in two ways. The HCHO-WS
correlation is moderately positive (r = 0.46),
implying that stronger winds can deepen/mix the
boundary layer and transport VOC-NOx precursors
that maintain secondary HCHO. At the same time,
WS-NO2/SOs: correlations are negative (-0.35 and
-0.70), evidencing efficient dispersion of primary
combustion pollutants [28]. The modest/negative
HCHO-O0:; correlation (= -0.23) is compatible with
local NOx titration of O, in traffic-influenced areas,
which can decouple Os from HCHO despite shared
photochemical drivers.

Finally, the small HCHO correlations with
CO (0.08) and NO2 (-0.02) indicate that satellite
columns of primary pollutants do not always track
a secondary product at monthly scales, owing
to differences in sources, chemistry, and mixing
height. Overall, temperature favor higher HCHO,
whereas humidity and precipitation suppress it,
yielding the coherent pattern evident in Figure 5.
For completeness, Figure 6 makes these links
explicit in the time domain: Figure 6(a) shows
monthly HCHO and surface-air temperature (2019-
2022) evolving in phase, with co-located summer
maxima (typically July-August) and winter minima

Correlation Matrix

Correlation Coefficient
1

0.5

SO, 0% o1 '
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017 000 01 021 00
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Fig. 5. Heatmap and summary of Spearman’s rank
coefficient for correlations between monthly average
HCHO, other air pollutants (CO, NO,, O,, SO,) and
Meteorological parameters (T, WS, RH, DWP, PP) in
Ahvaz, Iran, from 2019 to 2022.
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(November-January). Figure 6(b) displays the
anti-phase behavior with RH, where cool-season
humidity peaks and summer troughs mirror
the negative correlation noted above. Together,
Figures 5 and 6 reinforce that temperature-driven
photochemistry and VOC emissions elevate
HCHO, while humidity/precipitation primarily act
via removal and reduced photolysis.

3.3. Result of Health Risk Assessment

According to the 2015 census data from the Iran
Statistics Center, the population of Ahvaz city was
1,184,788 individuals [29]. The values for contact
risk and respiratory risk from 2019 to 2022 are
presented in Table 4; for context, population-scaled
counts (risk x city population) are also reported.

The findings indicate that respiratory risk is
consistently ~462 times higher than contact risk
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Fig. 6. Comparison of monthly average of HCHO
concentrations and (a) Surface air temperature and (b)
Relative Humidity, from 2019 to 2022.
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across all years, reflecting inhalation as the dominant
exposure pathway. Citywide expected cases vary
from ~468 (2021) to ~506 (2020), closely tracking
the annual mean HCHO (highest in 2020, lowest in
2021). These interannual differences are consistent
with the concentration patterns reported in Section
3.2. The reported risks are unitless lifetime cancer
probabilities per individual (IUR applied to the
annual-mean EC under the assumption of chronic
exposure). The accompanying counts represent
the expected number of excess cases obtained by
scaling the risk by the city population.

4. CONCLUSIONS

This study quantified 2019-2022 spatiotemporal
variability of HCHO over Ahvaz using Sentinel-
SP/TROPOMI, examined its associations with
meteorological drivers (PP, WS, T, RH, DWP) and
co-pollutants (CO, NO2, Os, SO:), and evaluated
health risks via RAIS.

*  We find marked seasonal and spatial variability
in HCHO, SO, NO2, Os, and CO. Temperature
shows a strong positive link with HCHO,
while relative humidity and precipitation are
negatively associated, consistent with enhanced
photochemistry at higher T and wet removal/cloud
shielding at higher RH/PP; these patterns agree
with prior studies [30, 31].

* Spatial contrasts persist across years: Os
concentrations/columns are generally higher in
the western—northwestern districts, whereas SO
exhibits recurrent hotspots in Region §, reflecting
localized industrial/combustion influences versus
regionally driven photochemistry for Os.

* Health risk: inhalation (respiratory) lifetime
cancer risk clearly exceeds contact risk in all years.
The highest respiratory risk occurs in 2020 and the
lowest in 2021, mirroring the corresponding annual
mean HCHO.

Table 4. Annual risk assessment of HCHO in Ahvaz city from 2019 to 2022.

Risk person per year
(population of Ahvaz 1,184,788)

Year Total annual  Average annual Annual Annual
concentration concentration contact risk  respiratory risk  Apnual contact Ann}ml
risk/population respiratory
risk/population

2019 0.001935 0.00016125 8.861E-07 0.00040897 1.05 484.5

2020  0.0020209 0.00016841 9.254E-07 0.00042711 1.10 506.03

2021 0.0018699 0.00015583 8.5628E-07  0.0003952 1.01 468.23

2022 0.0019073 0.00015894 8.734E-07 0.00040311 1.03 477.6
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Itisworthnoting, theseresults carryuncertainties
arising from satellite retrieval and processing
(QA/cloud screening and spatial resolution), the
conversion from VCD to volumetric concentration
(dependence on boundary-layer height), and
toxicity parameters/assumptions in RAIS (IUR/
CSF ranges and chronic-exposure assumptions).
Accordingly, risk values should be interpreted as
indicative magnitudes rather than exact counts. The
findings underscore the necessity for effective air
quality management and monitoring systems in
Ahvaz city. Addressing these pollution challenges
is crucial for improving living conditions and
safeguarding public health against the backdrop of
industrialization and environmental factors.

5. Appendix

Table A presents monthly average of HCHO, other
air pollutants (CO, NO,, O,, SO,) and meteorological
parameters recorded from 2019 to 2022 in Ahvaz, Iran.
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