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Abstract: In the present work, using suboridination techniques, we study certain subclasses of analytic univalent 
functions of complex order  associated with the sine function. The sharp coefficient bounds and the sharp Fekete-
Szegö inequality are obtained for these subclasses. Additionally, a sharp radius result is also derived for a certain 
subclass of Janowski starlike functions. These results generalize several known results as special cases and contribute 
to the broader theory of univalent functions. 

Keywords: Analytic Functions, Coefficient Bounds, Fekete-Szegö Problem, Radius Problem, Sine Function, 
Subordination.

1.    INTRODUCTION 

In Geometric function theory (GFT)  analytic 
functions and their geometric properties are 
regarded as core concepts. A key area of study 
within GFT is the class of univalent functions, 
which encompasses analytic functions. Many fields 
of mathematics and physics, including potential 
theory, fluid dynamics, and conformal mappings, 
rely heavily on these functions. where they are 
utilized to map the open unit disk onto domains 
with specific geometric structures [1]. Aleman and 
Constantin [2] proposed a significant connection 
between fluid dynamics and the theory of univalent 
functions. Specifically, the authors presented a 
straightforward technique that demonstrates how to 
explicitly solve the incompressible two-dimensional 
Euler equations using a univalent harmonic map. 
For the fundamental theory of univalent functions 
and a thorough understanding of the foundational 
concepts and key discoveries in the field, we direct 

the reader to previous studies [1, 3-5]. We will 
now review some fundamental definitions that are 
already familiar.

Let  represent the family of analytic 
functions  defined in the open unit disk

that satisfying  
 and admit the following power series 

expansion:

(1)

A function  is said to be univalent in  
if it maps distinct points in  to distinct points in 
its image, i.e.,  implies  
for  The class of all such univalent 
functions is denoted by  It is evident that an 
analytical function  for which   and 

 is called Schwartz function. Let  



and  be analytic in  Then  is subordinate to 
 written as , if there exists a Schwartz 

function , such that 

Several important subclasses of univalent 
functions have been introduced and studied, from 
which the classes  and , consisting of starlike 
and convex univalent functions respectively, are 
considered as the most extensively investigated 
subclasses of the class  of univalent functions in 
the open unit disk , and have 
been of major interest.  Ma and Minda [6] introduced 
a class of analytic and univalent functions  
and proposed the following subclasses of analytic 
functions.

(2)

and

(3)
     

Where  is a univalent function with 
,  and the region  is symmetric with 
respect to the real axis and star-shaped around the 
point .

An extension of equations  and  respectively, 
was provided by Ravichandran et al. [7], as follows:

and

where  Such functions are commonly 
referred to as Ma–Minda type functions of order 

.

A central focus in this area is the investigation 
of the coefficient bounds and related inequalities 
for various subclasses of , including results 
involving the Fekete-Szegö functional  
for   [8], and the radius problems. We 
now provide a brief review of these investigations.

Finding bounds for function coefficients is 
a central problem in GFT, as it governs growth 
and distortion properties. The second coefficient, 
for instance, controls growth and distortion. 

Reformulated as the task of estimating , the 
coefficient problem has been among the most 
challenging in the field. In 1916, Bieberbach [9] 
conjectured that for  and has the form, given 
in equation (1), then then  . The 
conjecture was finally settled in 1985 by Louis de 
Branges [10] confirming it for all  The Fekete-
Szegö problem is a classical coefficient problem 
that seeks sharp bounds for linear combinations of 
coefficients, typically ​, offering detailed 
information on the geometric characteristics of 
subclasses of univalent functions. Many studies 
have since focused on these problems; some recent 
contributions can be seen in previous studies [11-15].

Finally, attention is given to the radius 
problems, where the aim is to determine the 
maximal radius for which functions belonging to a 
particular subclass of  preserve specific geometric 
properties such as starlikeness or convexity. If 
we consider certain transformations or geometric 
conditions that fail to maintain univalence, such 
as those within the unit disk. It naturally leads to 
the question of whether such transformations or 
conditions may uphold univalence in a smaller 
subdisk 

Problems of this nature are commonly referred 
to as “radius problems”. The radius, , represents 
the largest subdisk,  within which specific 
transformations of a univalent function  or certain 
geometric conditions ensure univalence. The radius 
problems ensure the validity of certain geometric 
properties (such as starlikeness or convexity) within 
a disk of maximal size [16]. 

A key tool in such investigations is the well-
known Carathéodory class , consisting of analytic 
functions  in  and has the following form:

(4)

With . A significant portion 
on coefficient  problems involves expressing 
coefficients of functions in a given class in terms 
of those with positive real part, using known 
inequalities for  to analyze them. To unify and 
extend the study of these and related subclasses,  
Ma–Minda [6]  form of analytic functions are used, 
which offers a unified approach to several subclasses 
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of analytic functions through subordination 
techniques.

By following  unified approach presented by 
Ma and Minda [6], several authors in recent years 
have proposed new subclasses of the class  of 
univalent functions by selecting specific forms 
of the analytic function . Examples of such 
choices for  include: 
, is a widely studied the 
Janowski subclass of starlike functions [17], and 
the class of starlike function of order  deonted by  

 Similarly the 
class of Janowski convex functions and the class of 
convex function of order ∝,respectively expressed 
as  and 
In particular,   and  are the 
classical classes of starlike and convex functions, 
respectively. Cho et al. [18] introduced the class 

 of analytic functions, defined as follows:

In their work, authors conducted a 
comprehensive study on various radius problems 
associated with the class  of analytic functions. 
Their analysis includes determining sharp bounds 
for radii associated with geometric properties such 
as starlikeness and convexity. Further contributions 
to this class can be found in the work of Arif et al. 
[19], where the authors obtained sharp coefficient 
bounds, investigated the Fekete-Szegö inequality, 
and examined the Hankel determinant of order three. 
Additional geometric properties of functions in the 
class , along with recent related developments, 
are discussed  by Srivastava et al. [20] and Tang et 
al. [21]. Recently, Al-Shaikh et al. [22] introduced 
a class of starlike functions of complex order  
denoted by  where  

 and  This class comprises 
functions  that satisfy the subordination 
condition as follows: 

where  defines a cardioid domain, 
given by:

with , and . 

2.    PROPOSED WORK

Based on the earlier works of Cho et al. [18], 
Arif et al. [19], and Al-Shaikh et al. [22], the 
present investigation introduces a new subclass 

of analyic functions of complex 
order γ.

Definition 1. If a function  has the form given 
in (1), then it belongs to the subclass 
, provided the following conditions are satisfied:

for  and 

Equivalently,  if the image of

lies within the eight-shaped region  located 
in the right half-plane (see Figure 1 reported by 
Cho et al. [18]). Several known and newly defined 
subclasses emerge as special cases of Definition 1 
by choosing particular values of the parameters  
and  as illustrated below:

   A new subclass 
of starlike functions characterized by a complex 
parameter , related to the sine function.

 : A subclass of starlike 
functions associated with the sine function 
introduced by Cho et al. [18].

 : A new 
subclass of convex functions of complex  linked 
with the sine function.

    A subclass of 
convex functions associated with the sine function 
introduced by Arif et al. [19].

3.    SET OF LEMMAS

We begin by stating the following auxiliary results, 
that will be employed in deriving the main results.

Lemma 1. If  and has the form given in ,
then	   

and for any ,
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The relation in equation  can be found in 
previously reported literature [23]. The inequality 
stated in equation  was established by Keogh 
and Merkes [24] and related discussion is given by 
Ma and Minda [6].

Lemma 2.  [25] Let, . Then for  
we have

Lemma 3. [18] Let  and 
The following hold.

Where 

4.    MAIN RESULTS

In this section, we investigate the sharp bounds 
for the first two coefficients and obtain sharp 
estimates for the Fekete-Szegö inequality for 
functions belonging to the class 
. Additionally, a sharp radius result 
is also derived for a certain subclass of Janowski 
starlike functions. Known subclasses and their 
corresponding results are also discussed to 
emphasize the connection between the present 
work and previous studies.

4.1. Coefficint Problems

Theorem 1. If the function , 
and be given by equation (1). Then,

and 

These findings are sharp.

Proof.  If , then by defintion 
we have:

where  is a Schwarz function. Let,   be a 
function such that:

then . It follows that:

Using equation (7), we obtain:

(9)

By expanding  into its series form and 
applying elementary calculations, we obtain:

(10)

From equations (9), and (10), we obtain

and

Applying the relation (5) in (11), we obtain the 
required result. Furthermore, rearranging equation 
(12) gives:

Applying the triangle inequality together with 
equation (5) leads to the desired result. Sharpness 
of the bounds can be demonstrated by the following 
function, corresponding to particular values of the 
parameters  and 

Remark 1. For  in Theorem 1, we obtain the 
following new result for the subclass 
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Theorem 2.  Let and be given by 
 then

 and 
These bounds are sharp. 

Remark 2. For and   in Theorem 1, we 
obtain the following known result for the subclass 

, investigted by Cho et al. [18].

Theorem 3. Let  be given by equation 
Then,

 and 
Equality in these bounds is attained by the function 
(13).

Remark 3. Setting   in Theorem 1 yields a 
new result for the subclass  as stated 
below:

Theorem 4. Let  be given by 
Then,

 and  
The bounds are sharp for  and equality is 
attained by the function:

Remark 4. For  and  in Theorem 1, we 
obtain the following known result for the subclass 

, studied by Arif et al. [19].

Theorem 5. Let  and be given by equation 
. Then,

 and  

Equality in these bounds are attained by the function 
described in equation (14).

4.2. Fekete-Szegö Problem 

We now investigate the Fekete-Szegö functional for 
functions belonging to the subclass 

Theorem 6. If a function  of the form equation 
 belongs to  then

This result is sharp.

Proof.  If then from equations 
(11) and (12), we obtain:

Let,

Therefore:

from Lemma 1, equation , it follows that for 
we obtained the required result. for specific values 
of  and , equality is achieved by the function 
defined in equation (13).

Remark 5. A new result for the subclass  
is obtained by setting     in Theorem 6, as 
follow:

Theorem 7. Let  be given  Then

Equality is achieved for  by the function 
given in equation (13).

Remark 6. The choice   and  in 
Theorem 6 gives the result established earlier for 
the class  by Arif et al. [19].

Theorem 8.  Suppose  is be given . 
Then

The result attains the best possible bound.

Remark 7. A new result and its corresponding 
corollary for the subclass  are obtained 
by setting  and  in Theorem 6, 
respectively, as follows:

Theorem 9. Let  be given . Then

Corollary 1. If  with series form  
then
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The inequality becomes sharp for the specific case 

Remark 8. By setting   and  in 
Theorem 6, we obtain the following known result 
and corollary for the class , investigated Arif 
et al. [19].

Theorem 10. Let  be given  Then

Corollary 2. If  with series form  then

This inequality is sharp.

4.3. Radius Problem

In order discuss about the findings in this section, 
we first highlight a few known classes as follows:  
Let for ,

denoted by

For , if  , then 
 is represented by  and 

 For this class, Cho et 
al. [18], determined  the radii for the class 
of Janowski starlike functions and some other 
geometrically defined classes including the classes

 and 
 

these classes were considered by Ali et al. [26].

This section aims to determine the  
radius result for the subclass  of  Janowski 
starlike functions .

Theorem 11. The sharp radius for 
the subclass  is defined as:

Proof.  Let  define , so that 
 Then

Now, from the definition of the class 
, we consider the function:

From Lemma 2, since  it follows that:

Thus,

From Lemma 3, the image of the function 
 contains the open disk:

To ensure that , we require:

or equivalently,  
Thus, the sharp radius  corresponds to the smallest 
positive root of the equation: 

To show sharpness, consider the function:

then

This completes the proof.

Remark 9. When , Theorem 11 coincides 
with the known sharp radius result for the subclass 
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 examineded by Cho et al. [18].

Theorem 12. The sharp radius for the 
subclass  is given by:

5.    CONCLUSIONS 

In this study, we introduce some new subclasses of 
analytic functions of complex order , defined via 
subordination involving the sine function. Sharp 
coefficient estimates, Fekete-Szegö inequalities, and 
a radius result for a certain class are also obtained. 
These findings not only support applications in 
conformal mapping and applied analysis but also 
enhance the current theory of univalent functions. 
Furthermore, a well-known class and its associated 
results are highlighted to demonstrate the connection 
between earlier research and the present findings. 
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