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Abstract: In the present work, using suboridination techniques, we study certain subclasses of analytic univalent
functions of complex order Y associated with the sine function. The sharp coefficient bounds and the sharp Fekete-
Szegd inequality are obtained for these subclasses. Additionally, a sharp radius result is also derived for a certain
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1. INTRODUCTION

In Geometric function theory (GFT) analytic
functions and their geometric properties are
regarded as core concepts. A key area of study
within GFT 1is the class of univalent functions,
which encompasses analytic functions. Many fields
of mathematics and physics, including potential
theory, fluid dynamics, and conformal mappings,
rely heavily on these functions. where they are
utilized to map the open unit disk onto domains
with specific geometric structures [1]. Aleman and
Constantin [2] proposed a significant connection
between fluid dynamics and the theory of univalent
functions. Specifically, the authors presented a
straightforward technique that demonstrates how to
explicitly solve the incompressible two-dimensional
Euler equations using a univalent harmonic map.
For the fundamental theory of univalent functions
and a thorough understanding of the foundational
concepts and key discoveries in the field, we direct

the reader to previous studies [1, 3-5]. We will
now review some fundamental definitions that are
already familiar.

Let A represent the family of analytic
functions f defined in the open unit disk
€= {y € C: || < 1} that satisfying f(0) =0,
f’(0) =1 and admit the following power series
expansion:

o

f(‘ib) =)+ Z an‘ibn' (1)

n=2

A function f € U is said to be univalent in
if it maps distinct points in € to distinct points in
its image, i.e., f(¥1) = f(P2) implies P1 = P>
for ¥1,9¥, € €. The class of all such univalent
functions is denoted by §. It is evident that an
analytical function 4 for which «(0) =0 and
|te(y)] <1 is called Schwartz function. Let 91
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and g2 be analytic in €. Then g1 is subordinate to
g2, written as g1 < g2, if there exists a Schwartz
function ¢, such that g1 (¥) = g (w(@)).

Several important subclasses of univalent
functions have been introduced and studied, from
which the classes S* and C, consisting of starlike
and convex univalent functions respectively, are
considered as the most extensively investigated
subclasses of the class & of univalent functions in
the open unit disk € = { € C: || < 1}, and have
been of major interest. Ma and Minda [6] introduced
a class of analytic and univalent functions o)
and proposed the following subclasses of analytic
functions.

vr ')
S*(p) = {f €U ) < qo(ab)}, ()
and
B _ Y @)
E((p) - {f E'QI 1+ f;(lp) = (P(‘P)}- (3)

Where @(¥) is a univalent function with ¢(0) = 1
,®'(0) > 1 and the region @(€) is symmetric with
respect to the real axis and star-shaped around the
point ¢(0) =1,

An extension of equations (2) and (3), respectively,
was provided by Ravichandran et al. [ 7], as follows:

S'(y.p) = {f eA:1 +%(¢f @) — 1) < (p(qb)}

W)
o £ )
B . 1 tp n IP
ro)= {f WLt y( ) ) < 9"(‘“}'

where ¥ € €\ {0}. Such functions are commonly
referred to as Ma—Minda type functions of order

y.(y €C\ {0}).

A central focus in this area is the investigation
of the coefficient bounds and related inequalities
for various subclasses of &, including results
involving the Fekete-Szegd functional ‘ﬂg — a3 ‘
for 0 <A <1 [8], and the radius problems. We
now provide a brief review of these investigations.

Finding bounds for function coefficients is
a central problem in GFT, as it governs growth
and distortion properties. The second coefficient,
for instance, controls growth and distortion.

Reformulated as the task of estimating ay, the
coefficient problem has been among the most
challenging in the field. In 1916, Bieberbach [9]
conjectured that for f € Sand has the form, given
in equation (1), then then |an| <n, (n = 2). The
conjecture was finally settled in 1985 by Louis de
Branges [10] confirming it for alln = 2.The Fekete-
Szegd problem is a classical coefficient problem
that seeks sharp bounds for linear combinations of
coefficients, typically ‘ag — AaZ|, offering detailed
information on the geometric characteristics of
subclasses of univalent functions. Many studies
have since focused on these problems; some recent
contributions canbe seen in previous studies [11-15].

Finally, attention is given to the radius
problems, where the aim is to determine the
maximal radius for which functions belonging to a
particular subclass of § preserve specific geometric
properties such as starlikeness or convexity. If
we consider certain transformations or geometric
conditions that fail to maintain univalence, such
as those within the unit disk. It naturally leads to
the question of whether such transformations or
conditions may uphold univalence in a smaller
subdisk

Co={Y: Y| <R< 1} c@.

Problems of this nature are commonly referred
to as “radius problems”. The radius, R, represents
the largest subdisk, €o within which specific
transformations of a univalent function / or certain
geometric conditions ensure univalence. The radius
problems ensure the validity of certain geometric
properties (such as starlikeness or convexity) within
a disk of maximal size [16].

A key tool in such investigations is the well-
known Carathéodory class P, consisting of analytic

functions P in €, and has the following form:

pA) =1+ ) e (h € G) @

n=1

with Re(p(¥)) > 0. A significant portion
on coefficient problems involves expressing
coefficients of functions in a given class in terms
of those with positive real part, using known
inequalities for P to analyze them. To unify and
extend the study of these and related subclasses,
Ma—Minda [6] form of analytic functions are used,
which offers a unified approach to several subclasses
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of analytic functions subordination

techniques.

through

By following unified approach presented by
Ma and Minda [6], several authors in recent years
have proposed new subclasses of the class § of
univalent functions by selecting specific forms
of the analytic function ®(¥). Examples of such
choices for @(¥) include: 5[4, 421 = 5* (322
, =1 =4, <A; =1,is a widely studied the
Janowski subclass of starlike functions [17], and
the class of starlike function of order ¢ deonted by
S () = (W) 0 =x<1. Similarly the
class of Janowski convex functions and the class of
convex function of order o¢,respectively expressed
as ClA., As]1=C (ijﬁlj) and C€(=)=cC (M
In particular, S*(0) = S* and C(0) = C are the
classical classes of starlike and convex functions,
respectively. Cho et al. [18] introduced the class

Sqin of analytic functions, defined as follows:

v W) o }
Ssin = {f €A [iD) <1+ siny; (Y € €)y.
In their work, authors conducted a

comprehensive study on various radius problems
associated with the class Sgip, of analytic functions.
Their analysis includes determining sharp bounds
for radii associated with geometric properties such
as starlikeness and convexity. Further contributions
to this class can be found in the work of Arif et al.
[19], where the authors obtained sharp coefficient
bounds, investigated the Fekete-Szegd inequality,
and examined the Hankel determinant of order three.
Additional geometric properties of functions in the
class S;;,,, along with recent related developments,
are discussed by Srivastava et al. [20] and Tang et
al. [21]. Recently, Al-Shaikh et al. [22] introduced
a class of starlike functions of complex order V-
denoted by L(m,n, %, y) where =1 <n<m <1,
0<ox<1, and¥ € C\{0}. This class comprises
functions f € A that satisfy the subordination
condition as follows:

1+1( vf W)+ *f ()
Y \(A=e)f () +ecpf' (%)

where @car(m, n;¥) defines a cardioid domain,
given by:

- 1) < (pCar(;’n: n; IP),

2mt2p? 4+ (m — Dy + 2
2nt?Yp?+ (n—Dp+ 27

Pear (m, n; HD) =

. 1—/5
with T = ?\', and ¢ € €.

2. PROPOSED WORK

Based on the earlier works of Cho et al. [18],
Arif et al. [19], and Al-Shaikh et al. [22], the
present investigation introduces a new subclass
Rsin(% ¥; @sin) of analyic functions of complex
order .

Definition 1. If a function f €  has the form oiven
in (1), thenitbelongs to the subclass Rsin (X ¥; @sin)
, provided the following conditions are satisfied:

L f' @)+ P2f" @)
R e T R AL
for 0 < o< 1,y € C\ {0} and @sin(¥) = 1+ singy; (¥ € €).

Equivalently, f € Rsin (%, ¥; @sin) if the image of
L1 { RO WO 1}

y (A== f@)+ecypf' () )
lies within the eight-shaped region @sin located
in the right half-plane (see Figure 1 reported by
Cho et al. [18]). Several known and newly defined
subclasses emerge as special cases of Definition 1

by choosing particular values of the parameters <
and ¥, as illustrated below:

(i) msin(oa ¥ (Psin) = e;in (]’; lxb) A new subclass
of starlike functions characterized by a complex
parameter ¥, related to the sine function.

(i) Rsin(0,1; @sin) = Siin: A subclass of starlike
functions associated with the sine function
introduced by Cho et al. [18].

(iii) msin(la Y (Psin) = G-:sin (}'; ‘-Jb) A new
subclass of convex functions of complex ¥ linked
with the sine function.

(iv) msin(lll; Gosin) = Csint A subclass of
convex functions associated with the sine function
introduced by Arif et al. [19].

3. SET OF LEMMAS

We begin by stating the following auxiliary results,
that will be employed in deriving the main results.

Lemma 1. If P € ® and has the form given in (1),
then
leyl =2 forn=1, (5)

and for any v € C,

‘ —vcl‘<2max{1 |2v — 1]} (6)
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The relation in equation (5) can be found in
previously reported literature [23]. The inequality
stated in equation (6) was established by Keogh
and Merkes [24] and related discussion is given by
Ma and Minda [6].

Lemma 2. [25] Let, p € P (). Then for [¥] =7,

we have
Yp' (t!f) 2(1—c)nr™
p() (1 M1+ 1 -2)r")

Lemma 3. [18] Let 1 —sinl = a = 1 + sinl and
rq = sinl — |a — 1|. The following hold.

(WeC:W-al <r}céy, c(WeC: |W-1]| <sinl}.
Where 85, = @sin(& )-

4. MAIN RESULTS

In this section, we investigate the sharp bounds
for the first two coefficients and obtain sharp
estimates for the Fekete-Szegd inequality for
functions belonging to the class Rsin(% ¥ @sin)
. Additionally, a sharp &5, (¥;¥) —radius result
is also derived for a certain subclass of Janowski
starlike functions. Known subclasses and their
corresponding results are also discussed to
emphasize the connection between the present
work and previous studies.

4.1. Coefficint Problems

Theorem 1. If the function f € Rsin (X, ¥; @sin),
and be given by equation (1). Then,

| < vl
a2l = (1+x)’
lyl
— (1 + |y —1)).
las] = 34 5o (1 + b = 1D
These findings are sharp.

Proof. If f € Rsin(, ¥ @sin), then by defintion
we have:

14l { Y W+ PP f" @)
(1—c)f )+ pf' ()

where « () is a Schwarz function. Let,
function such that:

1+ @)
p(p) =175 (D)

_ 1} = 1+ sin(w@)), (7)

P be a

=1+ecp+cp? + espd+ -+, (8)

then p() € P. 1t follows that:
p(Y) -1 _ i+ c? + s +
p()+1 24+ + 3+
Using equation (7), we obtain:
1+1{ UF @)+ 2 f () _1}

Y (A—e)f () +ecpf ()

u(y) =

s (1+cc)a2w N 21+ 2x)az — (1+c>c)2a§)w2
Y 14
N [B(14+ct)ay — 3(140) (1 + 2 Qayas + (1+x)3a3] )

Y

By expanding «(i) into its series form and
applying elementary calculations, we obtain:

(w ()’

5
1+ sin(()) = 1 - () + 1 - (@),

5!

—1+1c1w+(——%)w2+(% ':2—3—@)4)3 - (10)

From equations (9), and (10), we obtain
Y

a = T+ o, (11)
and

y
“3:4(1+20()C2+4(1+2 a1 (12

Applying the relation (5) in (11), we obtain the
required result. Furthermore, rearranging equation
(12) gives:

1
lag| = m‘}’ﬂ‘z +yc(y —1)|.
Applying the triangle inequality together with
equation (5) leads to the desired result. Sharpness
of the bounds can be demonstrated by the following
function, corresponding to particular values of the
parameters o and V.

¥
F) = 1 exp J’smt—l
B 5 lib3 libél-
=Y+ totgt (13)

Remark 1. For «x= 0 in Theorem 1, we obtain the
following new result for the subclass Sg;, (v ).
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Theorem 2. Let f € &;,(y; ) and be given by
(1), then ol

laz] < |y|, and |as] S%(I +ly —1D.

These bounds are sharp.

Remark 2. Foroec = 0 and ¥ = 1 in Theorem 1, we
obtain the following known result for the subclass
Sqin> investigted by Cho et al. [18].

Theorem 3. Let f € S_;,,, be given by equation (1)
Then,

1
lay] < 1, and las| = p

Equality in these bounds is attained by the function
(13).

Remark 3. Setting &« = 1 in Theorem 1 yields a
new result for the subclass Csin(V: 1), as stated
below:

Theorem 4. Let f € C;,(y; 1Y) be given by (1)
Then,

Il < —
ool <, laal =20 (1 ly - 1))
The bounds are sharp for ¥ =1 and equality is
attained by the function:

1(pf"(p)
! +?{ W)

} =1+ sin(y). (14)

Remark 4. For X = 1 and ¥ = 1 in Theorem 1, we
obtain the following known result for the subclass
Csin, studied by Arif et al. [19].

Theorem 5. Let / € Csins and be given by equation
(1). Then,

1 1
|ﬂ.2| gaaand |&3| gﬁ_l

Equality in these bounds are attained by the function
described in equation (14).

4.2. Fekete-Szego Problem

We now investigate the Fekete-Szego functional for
functions belonging to the subclass Ry, (€, ¥ @5in)

Theorem 6. If a function f of the form equation
(1) belongs to Rsin(%¥; @sin) then

Iyl 22142 o) — 2y — 1) (1+00)?
21+2) m‘”{l ‘ (T+ac)? ]
This result is sharp.

lag — Aak| <

Proof. If f € Rsin(, ¥; @sin), then from equations
(11) and (12), we obtain: a; — Aaj

Y {C . (A(l +20) —(y — 1)(1+oc)2)}

41+ 2x) ! (1+00)?
Let,

(A +2%) = (y — D(1+e0)?
Ve (1+)2 '
Therefore:

‘a —Raz‘ = L‘C —vcz‘

3 217 4(1+20) ' L

from Lemma 1, equation (6), it follows that for v,
we obtained the required result. for specific values
of o and Y, equality is achieved by the function
defined in equation (13).

Remark 5. A new result for the subclass &¢;,, (y; ¥)
is obtained by setting €= 0  in Theorem 6, as
follow:

Theorem 7. Let f € Ssin(v; ) be given (1 Then

‘ﬂg —}{ag‘ < % max{1,|24 — (2y — 1)| }.

Equality is achieved for ¥ =1 by the function
given in equation (13).

Remark 6. The choice «=0 and y=1 in
Theorem 6 gives the result established earlier for
the class Sgin by Arif et al. [19].

Theorem 8. Suppose f € Siin is be given (1)
Then

1
‘ag —ila%‘ < 3 max{1,|24 — 1] }.
The result attains the best possible bound.
Remark 7. A new result and its corresponding
corollary for the subclass Csin(¥;¥) are obtained
by setting <=1 and 4 =1 in Theorem 6,
respectively, as follows:
Theorem 9. Let f € Cgin(y; ) be given (1). Then

1

‘ag —la%‘ < o max{15|3/1 — 22y — 1)] }

Corollary 1. If f € €, (y; ¥) with series form (D,
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The inequality becomes sharp for the specific case
y = 1L

Remark 8. By setting =1,y =1and A =1 in
Theorem 6, we obtain the following known result
and corollary for the class gy, investigated Arif
etal [19].

Theorem 10. Let /' € Csinbe given (1) Then

) 1 1
‘ﬂ,g —i{az‘ ég max [1,E|3)l — 2| }

Corollary 2. 1If f € Cg;p, with series form (1), then

‘(13—&2‘ 6

This inequality is sharp.
4.3. Radius Problem

In order discuss about the findings in this section,

we first highlight a few known classes as follows:
Let for _1 EAZ < Al E 1,

N 1+ A
PlA, 4,] ={p(w) =14 ) e () < HAZJ

k=n

denoted by

P(x) = P[1 -2 «,—1] and P = P(0).

Y
For fe2, if r(¥) = 7wy,  then

P[A1,A2] is represented by S*[A;,A,] and
5*(x) = §°[1 -2 o, —1]. For this class, Cho et
al. [18], determined the Ss;, —radii for the class
of Janowski starlike functions and some other
geometrically defined classes including the classes

={reu: HWEP}Sﬂmﬂﬂ and

N Fa)
eg,_vear(wey g €5 ()}

these classes were considered by Ali et al. [26].

This section aims to determine the S, (¥; @sin) —
radius result for the subclass &, of Janowski
starlike functions .

Theorem 11. The sharp &;,,(y; @sin) —radius for
the subclass =n is defined as:

. @) = ( sinl )
Shin(Visin) Vo1 \/|}f|2n2 + Sinz(l) + |}f|?’1 .

r)

Proof. Let f € &,, define h(y)) = v 2 SO that
h € P. Then

RO A0

f@) h(yp)

Now, from the definition of the class Ssin(V; @sin)
, we consider the function:

_ Pf () ) 1 (tph’ (th)
K =1 ( ) YT G )
From Lemma 2, since h € P, it follows that:
[yh' () 2nr™ B
[hg) | =T ST

Thus,

n

2n
x(y) —1] = =2y

From Lemma 3, the image of the function
©sin(y ) = 1 + siny contains the open disk:

Ssin ={W e C:|W—1] < sinl}.

To ensure that Y(¥0) < 1+ siny, we require:

2nr™ _
m < sml,

or equivalently, [v|(sinD)r?" + 2nr™ — |y|(sin1) < 0.
Thus, the sharp radius R corresponds to the smallest
positive root of the equation:

lyl(sin)r?" + 2nr™ — |y|(sinl) = 0
To show sharpness, consider the function:

1+¢n

fop) = e €P,
then
Yl () _ N 2Znyp™
fo(¥) y(1—y")
- 2nyn -
= o) —1] = =g sinl.

This completes the proof.

Remark 9. When ¥ = 1, Theorem 11 coincides
with the known sharp radius result for the subclass
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Sqins examineded by Cho et al. [18].

Theorem 12. The sharp S.;, —radius for the
subclass &y, is given by:

R,ﬁ';m (en) = (

sinl )
Jn2 +sin2(1) +n '
5. CONCLUSIONS

In this study, we introduce some new subclasses of
analytic functions of complex order ¥, defined via
subordination involving the sine function. Sharp
coefficient estimates, Fekete-Szego inequalities, and
a radius result for a certain class are also obtained.
These findings not only support applications in
conformal mapping and applied analysis but also
enhance the current theory of univalent functions.
Furthermore, a well-known class and its associated
results are highlighted to demonstrate the connection
between earlier research and the present findings.
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