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Abstract: This study examines vegetation dynamics and drought risk in Pakistan from 2001 to 2022 using MODIS 
Enhanced Vegetation Index (EVI) and Standardized Vegetation Index (SVI) processed in Google Earth Engine. EVI 
highlights high greenness in the irrigated plains of Punjab and Sindh, while SVI exposes widespread stress in these 
same areas, revealing a “greening paradox” where apparent productivity masks underlying vulnerability. Monthly 
SVI patterns follow strong seasonal cycles, with positive anomalies peaking during the monsoon driven kharif season 
(June-October) and persistent deficits occurring in the rabi season (December–May). Spatially, high EVI values (>0.4) 
were concentrated along the Indus River corridor, while arid zones such as Balochistan and the Thar Desert exhibited 
low EVI (<0.2). Mean SVI maps contradicted these patterns, showing negative anomalies in high EVI regions. Long 
term analysis indicated stable EVI until 2018, followed by a modest upward trend, while SVI shifted from chronic 
negative anomalies in the early 2000s (mean = –0.21) to sustained positive values after 2020 (mean = +0.58). At the 
provincial scale, Punjab showed a post 2015 decline, Sindh demonstrated recovery after drought episodes in 2010-
2012 and 2017-2018, Khyber Pakhtunkhwa displayed high variability without a clear trend, and Balochistan recorded 
the strongest improvement since 2005. Overall, EVI captured absolute greenness, while SVI provided anomaly based 
insights into drought conditions, detecting hidden stress in intensively irrigated areas and identifying genuine recovery 
in marginal regions. By integrating EVI and SVI, this study offers a robust framework for spatiotemporal drought 
monitoring in Pakistan. The results provide a scientific basis for climate smart agriculture, early warning systems, and 
sustainable land and water management strategies aimed at safeguarding food security in the face of rising drought 
frequency.  
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1.    INTRODUCTION 

Agriculture serves as the foundation for numerous 
businesses and provides millions of people with a 
means of subsistence [1]. However, unpredictable 
weather brought on by climate change has 
drastically decreased agricultural output. Drought 
disaster is one of the most frequent, severe natural 
disasters widespread on a year to year basis. As 
a result, climate smart agribusiness is now more 
important than ever. With this approach, agricultural 
productivity is intended to increase while mitigating 

and adjusting to the impacts of climate change [2-
4]. Climate smart agriculture now requires the use 
of remote sensing and machine learning methods on 
cloud data [5]. In remote sensing, sensors are used 
to collect data on the earth’s surface and atmosphere  
[6]. This technique makes it possible to get 
information on crucial agricultural characteristics 
including crop health and soil moisture. As a result, 
choices may be made about crop management, 
such as when to schedule irrigation, fertilize, and 
apply pesticides [7]. In addition, crop monitoring 
and forecasting are aided by remote sensing [8].



Unlike sudden onset disasters such as floods or 
earthquakes, drought is a slow onset hazard that 
is often difficult to define precisely due to its 
creeping nature, spatial variability, and delayed 
socio economic impacts. Drought occurrences are 
classified into four major categories based on the 
sectors they impact: meteorological, agricultural, 
hydrological, and socio economic drought. This 
study focuses primarily on agricultural drought  
defined as a period during which soil moisture falls 
below the level required for normal crop growth and 
development  as it directly affects food production 
and rural livelihoods in Pakistan.

For agriculture, drought is characterized 
by a period of soil moisture being less than 
the amount required for normal plant growth 
and development [9]. Numerous methods for 
monitoring and quantitatively describing drought 
have been developed during the last few decades, 
including the development of drought indices 
used in meteorology, hydrology, and agriculture. 
Traditional drought monitoring techniques rely on 
indices derived from meteorological station data 
such as precipitation. A number of the most broadly 
utilized meteorological drought indexes based only 
on this parameter is the World Meteorological 
Organization’s (WMO) proposed Standardized 
Precipitation Index (SPI). 

However, other climatic factors, including 
as evapotranspiration and temperature, impact the 
occurrence and severity of droughts. Beguera et 
al. [10] introduced the Standardized Precipitation 
Evapotranspiration Index (SPEI), which is based on 
both precipitation and potential evapotranspiration 
(PET). SPEI, like SPI, may be calculated at time 
intervals ranging from one to forty eight months. 
According to several researches, a 3 month SPI 
and SPEI are preferable for monitoring the impacts 
of drought on plants [11]. Since traditional station 
based drought monitoring systems required 
continuous historical information, satellite based 
methods give rapid and realistic findings for close 
to real time acquisition, drought analysis, and 
extensive and continuous geographic coverage 
[12]. 

Tucker and Choudhury [13] applied the 
Normalized Vegetation Index (NDVI) as a satellite 
based drought monitoring tool. The greatest and 
widely used satellite based vegetation indicator 

‘NDVI’ offers a useful indication of vegetation 
moisture conditions. In addition to NDVI, Land 
Surface Temperature (LST) derived from thermal 
satellite bands are used to improve drought 
measurements as temperature rises and soil 
moisture reduces. 

Subsequently, numerous vegetation indices 
(VIs) like the Vegetation Condition Index (VCI) 
were developed to better the research of vegetation 
states without weathering, particularly in non 
homogeneous areas. Because of its amplified 
sensitivity to water stress, temperature was also 
employed to develop drought indices such as the 
Temperature Condition Index (TCI) [14]. Drought 
indices including VCI and TCI can efficiently 
identify drought conditions since the combination 
of NDVI and LST provides statistics on both 
vegetation and moisture. Finally, scientists created 
the Vegetation Health Index (VHI) based on a 
numerical combination of VCI and TCI [15]. Using 
machine learning on cloud data, like Google Earth 
Engine (GEE), makes it possible to examine remote 
sensing information, more quickly and affordably 
[16]. Machine learning algorithms can be trained 
on large datasets in order to find trends and forecast 
future crop yields or other crucial agricultural 
parameters. These forecasts can be used to improve 
crop management techniques, lower input costs, 
and boost total productivity [17].

The standardized vegetation index (SVI) is 
one of the most important instruments for climate 
smart agriculture [18]. SVI, a measurement of plant 
development and cover, is created using satellite 
data. Since drought conditions may significantly 
affect agricultural productivity, the indicator is 
especially helpful for keeping track of them. The 
Enhanced Vegetation Index (EVI), a gauge of 
vegetation greenness, may be used to determine 
the SVI. The EVI is then normalized to produce an 
index that may be utilized to contrast various places 
and periods [19]. SVI may be used as a drought 
mitigation tool and to detect water stress early on 
by tracking plant growth and cover [20].

This study operationalizes the SVI via Google 
Earth Engine (GEE) to deliver scalable, near real 
time drought intelligence for Pakistan.  As country 
is a climate vulnerable region increasingly beset by 
intensifying water scarcity, prolonged dry spells, and 
more frequent and severe extreme weather events, 
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thus enabling proactive, data driven responses 
to agricultural stress. With employing SVI to 
enhance climate smart farming decision making 
is especially critical during periods of drought as 
early detection allows farmers and government 
agencies to implement timely interventions for 
adjusting irrigation schedules, shifting planting 
dates, or selecting drought resilient crop varieties. 
This can significantly mitigate yield losses and 
reduce systemic vulnerability to water shortages, 
ultimately supporting food security and rural 
livelihoods [21, 22].

The utility of SVI extends beyond mere drought 
assessment, as it provides a robust, spatially explicit 
indicator that can inform adaptive land management 
strategies, optimize resource allocation, improve 
crop yield forecasts, and help buffer agricultural 
systems against the escalating impacts of climate 
change, including rising temperatures, erratic 
rainfall patterns, and accelerated soil degradation. 
This study is good to leverage the power of 
cloud based remote sensing and Google Earth 
Engine to compute, monitor, and map SVI across 
Pakistan’s diverse agro ecological zones, where 
recurrent droughts, declining groundwater tables, 
and extreme climatic variability have rendered 
traditional monitoring approaches inadequate. 
Pakistan needs an integrated, high resolution, 
and operationally feasible drought early warning 
system to safeguard national agricultural resilience 
in an era of accelerating environmental uncertainty.

This study aims to establish a satellite based, 
cloud computing framework for agricultural drought 
monitoring in Pakistan using the Standardized 
Vegetation Index (SVI). Specifically, it seeks to: 

(1) To generate multi decadal (2001-2022) SVI 
and EVI time series for Pakistani provinces using 
MODIS data within Google Earth Engine; 
(2) To characterize mean, monthly, and inter annual 
patterns of vegetation stress to identify regional 
drought vulnerabilities and seasonal dynamics; 
(3) To evaluate SVI’s performance in capturing 
agriculturally relevant drought signals compared to 
traditional metrics; and 
(4) To make the foundation for integrating SVI 
analytics into national early warning systems and 
climate smart agricultural policies for supporting 
targeted interventions in irrigation, crop selection.

2.    MATERIALS AND METHODS 

2.1. Study Area

Pakistan is a South Asian nation bordered to the 
east by India, to the northwest by Afghanistan, to 
the west by Iran, and to the northeast by China 
(Figure 1). It has a total land size of approximately 
881,913 km² and a diverse topography of 
mountains, plateaus, and plains. Agriculture 
industry contributes significantly to the country’s 
economy and employing approximately 42% of the 
labour force and accounts for more than one fifth 
of GDP share. The farming is heavily dependent 
on irrigation, as around 90% of its agricultural 
land needs irrigation water. The main crops are 
wheat, rice, cotton, sugarcane, and maize, these are 
among Pakistan’s for food and export items,also 
significant production of fruits and vegetables 
such as mangoes, citrus, apples, and potatoes. The 
agriculture industry in Pakistan is confronted with 
a number of issues, including water scarcity, soil 
degradation, and climate change [23]. Pakistan has 
experienced severe droughts in recent years and 
affecting its agriculture. The agriculture sector is 
also vulnerable to floods that can cause extensive 
damage to crops and infrastructure [24, 25]. The 
Pakistani government has launched a number of 
initiatives in response to these challenges, including 
irrigation techniques and new methods, to support 
climate smart agriculture practices. These initiatives 
aim to increase agricultural productivity while 
mitigating the negative impacts of climate change 
[23]. The government is also investing in the study 
and creation of new technologies and practices 
to improve the efficiency and sustainability of 

Fig. 1. Study area Pakistan.
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agriculture, as country geography and topography 
make it ideal for agriculture which is a significant 
contributor to the country’s economy [26]. Though, 
country still faces a number of challenges, such as 
water scarcity, soil degradation, and climate change, 
necessitating the creation of novel solutions and 
practices [27].
 
2.2. MODIS Data Product (MOD13Q1)

The MOD13Q1 is a product of the Moderate 
Resolution Imaging Spectroradiometer (MODIS) 
sensor aboard NASA’s Terra and Aqua satellites. 
It is a vegetation index dataset, global data is 
available that provides information on vegetation 
health and productivity at a spatial resolution of 
250 meters. This MOD13Q1 data is using in many 
applications such as crop monitoring, land cover 
classification, and climate change studies [28, 
29]. MOD13Q1 provides both the Normalized 
Difference Vegetation Index (NDVI) and Enhanced 
Vegetation Index (EVI) data products. However, in 
this study only MODIS derived EVI product has 
been used.

2.3. Enhanced Vegetation Index (EVI)

MODIS is an excellent sensor system, this is one 
of NASA’s most extensively used in scientific 
studies.  MODIS product/vegetation datasets is 
the MOD13Q1, this global level product provides 
reliable and high quality measures of vegetation 
health and productivity. This has a spatial 
resolution of 250 meters with biweekly temporal 
coverage, and is widely used in the scientific and 
operational areas. The MOD13Q1 data is useful for 
applications such as crop monitoring, land cover 
categorization, drought assessment, phenological 
analysis, and long term climate change studies. Its 
uniform processing, substantial archive since 2000 
and multi sensor continuity make it a must have 
resource for understanding terrestrial ecosystem 
processes at regional and global scales [28-31].

The EVI equation includes blue and red bands, as 
well as the near infrared band. The equation is:

     (1)

Where, NIR is the reflectance in the near infrared 
band, Red is the reflectance in the red band, and 
Blue is the reflectance in the blue band. 

In an attempt to provide a more accurate 
measurement of vegetation canopy, the factors in 
the equation are employed to lessen the impact of 
the aerosol component of the atmosphere on the 
vegetation signal. Higher numbers denote more 
plant density and good growth, and the resulting 
EVI values range from -1 to +1.

2.4. Standardized Vegetation Index (SVI)

The SVI is a standardised measure that may be used 
to assess the productivity and health of vegetation 
in various places and throughout various time 
periods, particularly during extreme weather. This 
index offers information on the length and severity 
of droughts as well as how they affect vegetation 
[32]. SVI is derived from EVI by standardizing the 
EVI values across time and space:

                     (2)

Where, mean(EVI) is the average EVI value across 
a specified time period and area, and standard 
deviation (EVI) is the standard deviation of EVI 
across the same time period and area.

SVI evaluation applying MODIS EVI data in 
Google Earth Engine (GEE) involves a number of 
processes. The accuracy of the study is increased 
by first filtering the data from MODIS EVI by date 
and area of interest (AOI). The EVI range is then 
scaled to -1 to +1 after the filters have been applied 
to the data. Each image has statistics computed 
for it, such as mean values and standard deviation 
[33]. The rescaled EVI data, mean, and standard 
deviation numbers are then factored into a formula 
to determine the SVI. The mean EVI, and SVI 
image are used for visualization. The rescaled EVI 
data, mean, and standard deviation numbers are 
then factored into a formula to determine the SVI. 
The mean EVI, most recent EVI and SVI image are 
all included in the data display process using GEE. 
This method offers a quick and precise means to 
evaluate SVI using MODIS EVI data using GEE 
[34]. Provincial wise time series data were retrieved 
on monthly SVI data from 2001 to 2022, finally, 
mean SVI for whole Pakistan was calculated.

3.    RESULTS AND DISCUSSION

The EVI was calculated for the entire Pakistan 
region. The mean EVI map shows high vegetation 
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productivity (>0.4) along the Indus River corridor 
in Punjab and Sindh, driven by irrigation and 
agriculture. Lower values (<0.2) dominate arid 
regions like Balochistan and the Thar Desert, 
reflecting limited biomass. Negative values in 
mountainous and urban areas suggest bare soil 
(Figure 2). Monthly SVI datasets were used to 
obtain the mean SVI index for Pakistan indicating 
significant deviations from long term climatological 
norms. Negative SVI values (yellow to red) 
dominate central and southern regions, reflecting 
persistent drought conditions in irrigated and rainfed 
agricultural zones. In contrast, positive SVI values 
(green) are localized in northern mountainous areas 
and in many parts of Balochistan, suggesting above 
average vegetation health during the study period 
(Figure 3). 

3.1. Mean Monthly EVI and SVI Dynamics in 
Pakistan (2001 2022) 

Figure 4 shows mean monthly EVI and SVI 
dynamics in Pakistan during the study period. This 
monthly averaged EVI and SVI reveal distinct 
seasonal patterns that closely align with the region’s 
dual cropping agricultural system. EVI, which 
serves as a robust proxy for vegetation density 
and photosynthetic activity, exhibits a bimodal 
distribution with two pronounced peaks: one in 
February (0.153) and another in August (0.164). 
These peaks correspond to the growth phases of 
the rabi (winter) and kharif (monsoon) cropping 
seasons, respectively. The February peak reflects 
the vigorous development of rabi crops such as 
wheat and mustard, which benefit from winter 
precipitation and irrigation. The August peak, the 

highest of the year, coincides with the monsoon 
season, during which kharif crops like rice and 
maize achieve full canopy closure under favorable 
moisture conditions. The subsequent decline in 
EVI during September and October indicates crop 
maturation and harvest, leading to reduced green 
vegetation cover. 

In contrast, the SVI remains largely neutral 
(≈0.00) across most months, suggesting relatively 
stable. Notably, SVI registers a slight negative 
value in October (-0.01), likely reflecting post 
monsoon soil drying following the kharif harvest. 
However, a modest but meaningful positive shift 
occurs in November (0.01) and peaks in December 
(0.02), indicating improved soil moisture conditions 
coinciding with the sowing and early establishment 
of rabi crops. This late year rise in SVI may be Fig. 2.  Mean EVI index values in Pakistan.

Fig. 3.  Mean SVI index values in Pakistan.

Fig. 4. Mean monthly EVI and SVI dynamics in Pakistan 
(2001-2022).
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attributed to winter rainfall, residual soil moisture 
retention, or supplemental irrigation, all critical for 
supporting the rabi cropping cycle in this semi-arid 
agro climatic zone. 

The near zero SVI values observed during the 
peak EVI months (February and August) suggest 
that while vegetation is thriving, the soil moisture 
signal is either masked by dense canopy cover 
or remains within a balanced range that does not 
trigger strong positive or negative SVI responses. 
This underscores the complementary nature of EVI 
and SVI: while EVI effectively captures vegetation 
phenology, SVI provides nuanced insights into 
underlying conditions that support or constrain 
vegetation growth. Together, these indices confirm 
the resilience and productivity of Pakistan’s 
agricultural system, which leverages both monsoon 
rains and winter moisture (natural or managed) 
to sustain year-round cultivation. The 2001-2022 
data thus encapsulate a typical, well-functioning 
agricultural calendar in Pakistan, characterized by 
timely transitions between cropping seasons and 
effective moisture management. 

3.2. Temporal Dynamics of Vegetation and Soil 
Conditions in Pakistan (2001–2022): Insights 
from EVI and SVI Time Series 

The SVI and EVI derived long term monthly time 
series for Pakistan from 2001 to 2022 provide 
crucial data on vegetation phenology and soil 
vegetation interactions (Figure 5). This reflects the 
region’s dominant double cropping system, the EVI 
time series shows consistent seasonal trends with 
recurring peaks during the kharif (monsoon) season, 
particularly in August, and secondary peaks during 

the rabi (winter) season, primarily in February and 
March. The primary forces behind these bimodal 
cycles are monsoon rains (June-September), which 
support kharif crops like rice and maize, and winter 
irrigation and rainfall, which support rabi crops 
like wheat and mustard. It’s interesting to note 
that while EVI values fluctuate from year to year, 
noteworthy increases have been observed recently 
(e.g., 2019-2022), suggesting higher vegetation 
production possibly linked to improved irrigation 
practices, crop management, or favorable climatic 
conditions. 

In contrast, the SVI time series displays 
more dynamic and variable behavior, indicating 
significant fluctuations over time (Figure 6). The 
early years (2001-2005) show predominantly 
negative SVI values (down to –1.18), suggesting 
dry soil conditions or sparse vegetation cover, a 
marked shift occurs post 2007, with increasing 
frequency and magnitude of positive SVI 
anomalies. The most notable surge occurs around 
2020-2022, where SVI reaches values exceeding 
1.0, indicating exceptionally favorable soil moisture 
and vegetation conditions. This upward trend may 
reflect changes in land use, increased groundwater 
utilization, climate variability (e.g., higher winter 
precipitation), or improvements in agricultural 
infrastructure. However, the high volatility in SVI 
suggests sensitivity to short term weather events, 
such as droughts or heavy rainfall, which can 
rapidly alter soil moisture dynamics and impact 
crop health. 

The mean monthly SVI index values were 
estimated for Pakistan (Figure 7), This shows 

Fig. 5. Monthly time series of EVI. Fig. 6. Monthly time series of SVI.
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the monthly variation in vegetation stress 
across Pakistan from January to December. The 
highest SVI values occur during June–October, 
corresponding with the monsoon season and peak 
crop growth, particularly in Punjab and Sindh. In 
contrast, negative SVI values dominate during the 
dry winter months (December-February), indicating 
below average vegetation conditions. This seasonal 
pattern reflects strong dependence on monsoon 
rains and agricultural phenology, with central and 
southern regions showing greater variability due to 
irrigation and rainfall fluctuations. 

Inter annual SVI conditions were observed 
using time series SVI in Punjab, Sindh, Khyber 
Pakhtunkhwa, and Balochistan provinces 
respectively in Figures 8(a to d). The SVI for 
Punjab shows strong seasonal fluctuations 
with distinct peaks during the summer months, 
indicating healthy vegetation growth driven by 
monsoon rains and agricultural activity (Figures 
8(a)). However, the index displays no significant 
long-term trend and even suggests a slight decline 
after 2015, potentially reflecting increasing water 
stress, overuse of resources, or environmental 
degradation despite high agricultural productivity. 
In Sindh, the SVI exhibits moderate seasonality 
and a notable upward trend starting around 2015, 
signaling improved vegetation conditions over 
time (Figures 8(b)). This positive shift may be 
attributed to better irrigation infrastructure, climate 
variability, or agricultural development, suggesting 
a recovery from earlier periods of drought and 

land degradation, particularly observed during 
2010-2012 and 2017-2018. Khyber Pakhtunkhwa 
experiences high variability in SVI, with sharp 
peaks and frequent negative values, reflecting its 
mountainous terrain and dependence on seasonal 
rainfall (Figures 8(c)). The lack of a consistent long-
term trend indicates ongoing ecological instability, 
with vegetation remaining vulnerable to climate 
extremes and land degradation, highlighting the 
need for sustainable land and water management 
practices.  Balochistan stands out with a remarkable 
upward trend in SVI beginning around 2005, 
transitioning from very low vegetation levels to 
near normal conditions by 2015 (Figures 8(d)). 
This significant improvement suggests successful 
rangeland restoration, afforestation efforts, or 
increased rainfall, marking one of the most positive 
environmental developments across Pakistan’s 
provinces in the past two decades. 

The SVI provides a powerful metric for 
assessing vegetation stress and productivity by 
quantifying deviations of current vegetation 
conditions from long term climatological norms. 
Low or negative SVI values typically indicate 
below average vegetation performance, often 
linked to water stress, drought, or poor soil 

Fig. 7.  Mean monthly SVI index values in Pakistan.

Fig. 8. Time series SVI in provinces of Pakistan: (a) 
Punjab, (b) Sindh, (c) Khyber Pakhtunkhwa, and (d) 
Balochistan.
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moisture availability, while positive values signify 
above average vigor, suggesting favorable growing 
conditions. The magnitude of these anomalies offers 
insight into the severity of stress or the degree of 
productivity enhancement. However, interpretation 
must be contextualized: a negative SVI may reflect 
natural aridity in rangelands but signal critical stress 
in irrigated croplands, where even minor moisture 
deficits can compromise yield. Thus, SVI should 
not be interpreted in isolation but integrated with 
land use, crop type, and hydrological data to avoid 
misclassification of ecological states. 

Drought is a pervasive and escalating 
global phenomenon, characterized by prolonged 
deficiencies in atmospheric, surface, or subsurface 
water supplies that persist for months or years [35]. 
Driven by climate change, population growth, and 
intensified land use, droughts have become more 
frequent, severe, and widespread particularly in 
tropical and subtropical regions such as South 
Asia. Their impacts include soil retrogression, 
desertification, reduced agricultural output, 
ecosystem degradation, increased frequency of 
wildfires and sandstorms, and heightened socio-
economic vulnerabilities [36-38]. As one of the 
most dangerous climate related hazards, drought 
directly threatens food security, economic 
stability, and rural livelihoods [39], making timely 
monitoring and assessment essential for proactive 
adaptation and resource allocation [40].  In this 
context, remote sensing-based drought monitoring 
has emerged as a scalable and cost-effective tool for 
tracking spatiotemporal dynamics across vast, data 
scarce regions like Pakistan. 

This study leverages MODIS derived 
Enhanced Vegetation Index (EVI) and Standardized 
Vegetation Index (SVI), processed via Google 
Earth Engine (GEE), to investigate the evolution 
of vegetation stress and resilience over a 22-year 
period (2001-2022). GEE enables efficient access 
to decades of satellite data, facilitates large scale 
analysis, and supports visualization of spatial 
trends through maps and time series critical for 
collaboration among researchers and decision 
makers [41-43]. Drought assessment is critically 
important in Pakistan, where arid and semi-arid 
climates heighten vulnerability to water scarcity, 
threatening agricultural productivity, economic 
stability, and social wellbeing [44, 45]. Timely 
monitoring enables proactive interventions such as 

deploying drought resistant crops [46], optimizing 
irrigation, and activating early warning systems 
to mitigate impacts on vulnerable communities. 
Integrating remote sensing and machine learning 
enhances the accuracy and scalability of drought 
detection, supporting data driven policy and 
resource allocation [47]. Ultimately, robust 
drought assessment strengthens climate resilience, 
safeguards food security, and contributes to poverty 
reduction and sustainable development across 
Pakistan’s agricultural landscapes. By analyzing 
EVI and SVI jointly, we move beyond passive 
observation toward diagnostic assessment: EVI 
captures absolute biomass and canopy greenness, 
while SVI reveals whether current vegetation 
performance deviates significantly positively or 
negatively from historical baselines [48, 49]. 

Pakistan’s agro ecosystem, dominated by 
the Indus Basin irrigation network, is particularly 
vulnerable due to its arid and semi-arid climate, 
heavy reliance on groundwater, and exposure 
to monsoon variability. The consistent bimodal 
pattern in EVI peaking in February-March (rabi 
season) and August (kharif season) confirms the 
enduring stability of Pakistan’s dual cropping 
system, sustained by canal irrigation and extensive 
groundwater extraction [50]. The modest upward 
trend in EVI since 2018 aligns with documented 
increases in cropping intensity, adoption of high 
yielding varieties, and expansion of double 
cropping into marginal lands, driven by government 
subsidies, mechanization, and improved seed 
distribution [51, 52]. 

However, EVI alone cannot distinguish 
between sustainable intensification and ecologically 
unsustainable practices. Here, SVI provides critical 
diagnostic clarity. The emergence of sustained 
positive SVI anomalies (> +1.0) after 2007, and 
their culmination in record high values during 
2020-2022 indicates that vegetation performance 
has consistently exceeded historical expectations 
over the past 15 years. This shift is not merely 
recovery from earlier droughts (evident in persistent 
negative SVI during 2000-2006) [53]. It reflects a 
systemic transformation in the drivers of vegetation 
productivity. Three interrelated factors underpin 
this transition: First, intensified water management 
driven by proliferation of subsidized tubewells 
post 2005 has enabled farmers in Punjab (where 
>90% of irrigation is groundwater dependent) to 
advance rabi sowing and extend kharif seasons 
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beyond natural rainfall limits [54, 55]. Yet this 
intensification comes at the cost of severe aquifer 
depletion, with the Indus Basin now recognized as 
one of the world’s most overstressed groundwater 
systems, where extraction exceeds recharge by 
100-120% in key districts [56].

Second, improved agronomic practices 
including zero till drilling, residue retention, and 
precision fertilizer application have gained traction 
since 2010 under Climate Smart Agriculture 
initiatives, enhancing soil moisture retention and 
reducing evaporation, thereby boosting SVI even 
under suboptimal rainfall [57]. Third, climatic 
amelioration has contributed: recent analyses 
confirm an increase in winter precipitation events 
linked to shifting mid latitude cyclones and 
enhanced moisture transport from the Mediterranean 
and Caspian Sea [58]. Though episodic, their 
heightened frequency since 2007 has provided 
critical supplemental recharge during key sowing 
windows, synergizing with managed irrigation and 
conservation practices.

Provincial level analysis (Figures 8(a-d)) 
reveals stark regional contrasts. In Punjab, rising 
EVI and increasingly positive SVI since 2015 mask 
alarming groundwater decline and a temporary 
boost in productivity fueled by non-renewable 
aquifer drawdown [59]. In Sindh, moderate EVI 
gains coupled with a clear, accelerating SVI rise 
since 2015 suggest improved resilience through 
infrastructure investments canal lining, floodwater 
harvesting, and distributary rehabilitation reducing 
conveyance losses without excessive groundwater 
dependence [60]. Khyber Pakhtunkhwa exhibits 
high SVI volatility with no long-term trend, reflecting 
its rain fed, mountainous terrain and vulnerability 
to erratic precipitation; however, the province’s 
Billion Tree Tsunami afforestation project (2014-
2017) the world’s largest single region reforestation 
initiative has significantly restored upland 
ecosystems, indirectly supporting microclimatic 
stability and groundwater recharge, though its 
impact on lowland cropland SVI remains limited 
[61, 62]. Most notably, Balochistan demonstrates 
the most dramatic transformation: transitioning 
from among the lowest SVI values nationally (pre-
2005) to consistently positive anomalies by 2015. 
This recovery correlates strongly with community-
based rangeland restoration programs led by 
the Balochistan Forest and Range Department, 

supported by FAO, UNDP, and ICARDA, which 
promoted native species (Prosopis cineraria, Acacia 
nilotica, Ziziphus mauritiana), contour bunding, 
water harvesting, and regulated grazing resulting 
in improved soil moisture, reduced erosion, and 
increased biomass all achieved without significant 
groundwater extraction [63]. Balochistan thus 
offers a replicable model of ecological resilience 
grounded in ecosystem-based adaptation rather 
than resource exploitation.

The central insight of this study is that a 
positive SVI does not equate to sustainability. This 
reflects relative performance against historical 
norms, not absolute ecological health. In Pakistan 
the rising SVI may signal genuine improvement 
through better water delivery, conservation 
agriculture, or restoration but it may also mask 
dangerous tradeoffs as unsustainable groundwater 
mining, land degradation, chemical overuse, and 
biodiversity loss. 

Punjab and parts of Sindh also experience a 
more severe self-reinforcing feedback loop: higher 
SVI → increased farmer confidence → increased 
tubewell pumping → rapid aquifer depletion → 
eventual system collapse. Similar patterns have 
been observed in other areas where satellite derived 
greening concealed a disastrous groundwater 
decrease until wells dried up and farming ceased to 
be profitable [64].

Pakistan now stands at a point, where short 
term productivity gains are being purchased at 
the expense of long-term hydrological capital. 
Relying on SVI alone as a success indicator risks 
incentivizing practices that maximize yield today at 
the cost of ruin tomorrow. A farmer achieving an SVI 
of +1.5 through 50% more groundwater abstraction 
may reap bumper harvests now but face poverty 
when the aquifer collapses. Therefore, policy 
must evolve beyond measuring “performance” to 
evaluating true resilience: the capacity of the agro 
ecosystem to maintain productivity under future 
stress without depleting its natural capital.

While our analysis leverages robust MODIS 
derived EVI and SVI data processed via Google 
Earth Engine, several methodological limitations 
must be acknowledged. First, the 500 m spatial 
resolution of MODIS aggregates heterogeneous 
land covers including irrigated fields, fallow land, 
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urban patches, and degraded rangelands potentially 
smoothing local anomalies and obscuring field scale 
dynamics; future studies should integrate higher 
resolution sensors such as Sentinel 2 or Landsat 8/9 
to resolve fine grained heterogeneity [65].

Second, SVI is sensitive to atmospheric 
aerosols, cloud contamination, and sensor 
calibration drift, particularly during the monsoon 
months (July-September), introducing noise and 
data gaps in peak season estimates; rigorous quality 
control and temporal gap filling techniques (e.g., 
harmonic regression) are essential [66]. Third, the 
absence of a nationwide network of in situ validation 
sites measuring soil moisture, groundwater levels, 
and crop yields severely limits causal inference; 
urgent collaboration between remote sensing 
teams, universities (e.g., University of Agriculture 
Faisalabad, National Defence University), and 
institutions like FAO is needed to establish ground 
truth stations across agro climatic zones. Fourth, 
SVI captures vegetation response to moisture with 
lags of weeks to months, especially for deep rooted 
crops such as sugarcane or cotton; integrating 
thermal indices (e.g., Land Surface Temperature, 
LST; Thermal Condition Index, TCI) could improve 
detection of immediate soil moisture stress. Fifth, 
SVI cannot distinguish between cultivated crops, 
weeds, invasive species, or fallow land a high SVI 
value in non-agricultural areas may falsely suggest 
“improvement”; coupling SVI with high resolution 
land cover classifications (e.g., GlobeLand30) 
would enhance interpretability. Finally, while we 
correlate SVI trends with policy interventions (e.g., 
canal lining, afforestation), we cannot quantify 
their individual contributions without econometric 
modeling or farm level surveys; future research 
must combine remote sensing with participatory 
rural appraisals and household level water use data 
to disentangle climate, management, and policy 
drivers.

This study provides actionable intelligence for 
designing climate resilient agricultural policies in 
Pakistan, proposing five evidence-based priorities. 
First, energy and fertilizer subsidies must be 
reoriented away from water intensive crops such 
as rice and sugarcane toward drought tolerant 
alternatives including millets, sorghum, and 
chickpeas and scaled up investments in precision 
irrigation technologies like drip and sprinkler 
systems, as well as solar powered tubewells to 

reduce fossil fuel dependence. Evidence from 
pilot programs in Punjab demonstrates that drip 
irrigation on wheat can achieve 30-40% water 
savings without yield loss, yet adoption remains 
below 5% due to upfront cost barriers [67].

Second, ecosystem-based adaptation (EbA) 
strategies proven successful in Balochistan such 
as community managed afforestation using native, 
drought tolerant species (Prosopis cineraria, 
Acacia nilotica), contour bunding, check dams, 
and micro watershed restoration must be replicated 
nationwide, particularly in Khyber Pakhtunkhwa 
and southern Punjab. These approaches have 
demonstrably improved soil organic matter by 
22%, reduced runoff by 40%, and increased forage 
biomass by 60% over five years in Balochistan, 
offering a low input, high resilience model distinct 
from groundwater dependent intensification. Third, 
Pakistan must establish a National Vegetation 
Anomaly Monitoring System (PVAMS), 
operationalized through the National Disaster 
Management Authority (NDMA) and the Ministry 
of Climate Change, featuring real time dashboards 
displaying monthly SVI anomalies at the district 
level, automated alerts triggered when SVI falls 
below -1.0 for three consecutive months, and 
linkage to parametric drought insurance schemes 
that disburse payouts based on index thresholds 
rather than costly and delayed yield assessments 
models successfully deployed in India’s Agromet 
Advisory System and Kenya’s index based livestock 
insurance [68].

Fourth, groundwater governance must be 
modernized using remote sensing as an enforcement 
tool: areas exhibiting high EVI coupled with 
rapidly increasing SVI and declining groundwater 
tables should be designated “critical overdraft 
zones”, where mandatory metering of tubewells 
and progressive pricing for excessive extraction 
are enforced mirroring the 35% reduction in 
groundwater use achieved in Gujarat, India, through 
satellite guided zoning [69, 70].

Fifth, national investment in data infrastructure 
and human capacity is critical: training for number 
of experts, agricultural extension officers to interpret 
EVI/SVI maps, launching mobile applications 
delivering localized SVI advisories in Urdu, 
Pashto, and Balochi, and establishing a centralized, 
open access national repository of in situ soil 
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moisture, yield, and groundwater data all integrated 
with Google Earth Engine would empower farmers 
and policymakers alike with timely, actionable 
intelligence. Pakistan’s agricultural system is not 
failing it is adapting, innovating, and, in many 
places, thriving. The sustained rise in EVI and the 
dramatic surge in SVI since 2007 stand as testament 
to the ingenuity of millions of smallholder farmers 
and decades of public investment in irrigation 
infrastructure and extension services. But we must 
ask: at what cost? The most alarming finding of 
this study is not the absence of progress, but the 
dangerous illusion of progress. Rising SVI values 
in Punjab and Sindh may reflect short term gains 
achieved through the liquidation of Pakistan’s 
most vital natural asset: its groundwater. The same 
SVI signal that tells us “vegetation is doing better 
than ever” may also be screaming: “the aquifer is 
dying”. True resilience is not measured by how 
well crops grow in a good year it is measured 
by how well the system survives in a bad one. 
Balochistan teaches us that ecological restoration 
can build resilience without exploitation. Sindh 
shows that infrastructure efficiency can decouple 
productivity from groundwater dependence. Punjab 
demonstrates the peril of intensification without 
regulation.

We urge policymakers to shift from reactive 
crisis response to proactive, data driven governance. 
The tools exist: MODIS, Google Earth Engine, 
SVI, and emerging ground networks. The future 
of Pakistan’s food security does not lie in pumping 
more water it lies in managing less, smarter, and 
fairer. Continued monitoring of EVI and SVI is 
not optional, it is foundational. This can be good in 
management.

4.    CONCLUSIONS

This study presents the first long term (2001-
2022), province scale assessment of agricultural 
drought across Pakistan using the Standardized 
Vegetation Index (SVI) derived from MODIS EVI 
data processed in Google Earth Engine (GEE). 
Our analysis reveals distinct regional trajectories: 
Punjab shows a concerning post 2015 decline in 
SVI, indicative of mounting water stress despite 
intensive irrigation; Sindh and Balochistan exhibit 
significant recovery, likely attributable to improved 
water infrastructure and large scale afforestation 
efforts; while Khyber Pakhtunkhwa remains highly 

volatile, reflecting its rainfall dependent ecosystems. 
This work advances drought monitoring in semi 
arid, data scarce regions by introducing an open 
source, reproducible GEE workflow for operational 
SVI computation and statistically robust drought 
classification, the spatiotemporal behavior of SVI 
corresponds closely with documented drought 
events and regional patterns of agricultural water 
stress across Pakistan particularly in major 
cropping zones such as Punjab and Sindh. This 
alignment suggests that SVI, derived from satellite 
based vegetation dynamics, captures signals 
relevant to agricultural drought conditions beyond 
purely meteorological indicators like precipitation 
based indices. The SVI outputs offer practical 
utility for operational drought monitoring and can 
inform climate smart agriculture (CSA) decision 
making including strategic crop planning, irrigation 
prioritization, and early warning dissemination 
empowering provincial and national agencies to 
target interventions, allocate resources efficiently, 
and strengthen resilience in Pakistan’s increasingly 
climate vulnerable farming systems.
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