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Abstract: This study examines vegetation dynamics and drought risk in Pakistan from 2001 to 2022 using MODIS
Enhanced Vegetation Index (EVI) and Standardized Vegetation Index (SVI) processed in Google Earth Engine. EVI
highlights high greenness in the irrigated plains of Punjab and Sindh, while SVI exposes widespread stress in these
same areas, revealing a “greening paradox” where apparent productivity masks underlying vulnerability. Monthly
SVI patterns follow strong seasonal cycles, with positive anomalies peaking during the monsoon driven kharif season
(June-October) and persistent deficits occurring in the rabi season (December—May). Spatially, high EVI values (>0.4)
were concentrated along the Indus River corridor, while arid zones such as Balochistan and the Thar Desert exhibited
low EVI (<0.2). Mean SVI maps contradicted these patterns, showing negative anomalies in high EVI regions. Long
term analysis indicated stable EVI until 2018, followed by a modest upward trend, while SVI shifted from chronic
negative anomalies in the early 2000s (mean = —0.21) to sustained positive values after 2020 (mean = +0.58). At the
provincial scale, Punjab showed a post 2015 decline, Sindh demonstrated recovery after drought episodes in 2010-
2012 and 2017-2018, Khyber Pakhtunkhwa displayed high variability without a clear trend, and Balochistan recorded
the strongest improvement since 2005. Overall, EVI captured absolute greenness, while SVI provided anomaly based
insights into drought conditions, detecting hidden stress in intensively irrigated areas and identifying genuine recovery
in marginal regions. By integrating EVI and SVI, this study offers a robust framework for spatiotemporal drought
monitoring in Pakistan. The results provide a scientific basis for climate smart agriculture, early warning systems, and
sustainable land and water management strategies aimed at safeguarding food security in the face of rising drought
frequency.
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1. INTRODUCTION and adjusting to the impacts of climate change [2-

4]. Climate smart agriculture now requires the use

Agriculture serves as the foundation for numerous
businesses and provides millions of people with a
means of subsistence [1]. However, unpredictable
weather brought on by climate change has
drastically decreased agricultural output. Drought
disaster is one of the most frequent, severe natural
disasters widespread on a year to year basis. As
a result, climate smart agribusiness is now more
important than ever. With this approach, agricultural
productivity is intended to increase while mitigating

of remote sensing and machine learning methods on
cloud data [5]. In remote sensing, sensors are used
to collect data on the earth’s surface and atmosphere
[6]. This technique makes it possible to get
information on crucial agricultural characteristics
including crop health and soil moisture. As a result,
choices may be made about crop management,
such as when to schedule irrigation, fertilize, and
apply pesticides [7]. In addition, crop monitoring
and forecasting are aided by remote sensing [8].
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Unlike sudden onset disasters such as floods or
earthquakes, drought is a slow onset hazard that
is often difficult to define precisely due to its
creeping nature, spatial variability, and delayed
socio economic impacts. Drought occurrences are
classified into four major categories based on the
sectors they impact: meteorological, agricultural,
hydrological, and socio economic drought. This
study focuses primarily on agricultural drought
defined as a period during which soil moisture falls
below the level required for normal crop growth and
development as it directly affects food production
and rural livelihoods in Pakistan.

For agriculture, drought is characterized
by a period of soil moisture being less than
the amount required for normal plant growth
and development [9]. Numerous methods for
monitoring and quantitatively describing drought
have been developed during the last few decades,
including the development of drought indices
used in meteorology, hydrology, and agriculture.
Traditional drought monitoring techniques rely on
indices derived from meteorological station data
such as precipitation. A number of the most broadly
utilized meteorological drought indexes based only
on this parameter is the World Meteorological
Organization’s (WMO) proposed Standardized
Precipitation Index (SPI).

However, other climatic factors, including
as evapotranspiration and temperature, impact the
occurrence and severity of droughts. Beguera et
al. [10] introduced the Standardized Precipitation
Evapotranspiration Index (SPEI), which is based on
both precipitation and potential evapotranspiration
(PET). SPEI, like SPI, may be calculated at time
intervals ranging from one to forty eight months.
According to several researches, a 3 month SPI
and SPEI are preferable for monitoring the impacts
of drought on plants [11]. Since traditional station
based drought monitoring systems required
continuous historical information, satellite based
methods give rapid and realistic findings for close
to real time acquisition, drought analysis, and
extensive and continuous geographic coverage
[12].

Tucker and Choudhury [13] applied the
Normalized Vegetation Index (NDVI) as a satellite
based drought monitoring tool. The greatest and
widely used satellite based vegetation indicator

‘NDVI’ offers a useful indication of vegetation
moisture conditions. In addition to NDVI, Land
Surface Temperature (LST) derived from thermal
satellite bands are used to improve drought
measurements as temperature rises and soil
moisture reduces.

Subsequently, numerous vegetation indices
(VIs) like the Vegetation Condition Index (VCI)
were developed to better the research of vegetation
states without weathering, particularly in non
homogeneous areas. Because of its amplified
sensitivity to water stress, temperature was also
employed to develop drought indices such as the
Temperature Condition Index (TCI) [14]. Drought
indices including VCI and TCI can efficiently
identify drought conditions since the combination
of NDVI and LST provides statistics on both
vegetation and moisture. Finally, scientists created
the Vegetation Health Index (VHI) based on a
numerical combination of VCI and TCI [15]. Using
machine learning on cloud data, like Google Earth
Engine (GEE), makes it possible to examine remote
sensing information, more quickly and affordably
[16]. Machine learning algorithms can be trained
on large datasets in order to find trends and forecast
future crop yields or other crucial agricultural
parameters. These forecasts can be used to improve
crop management techniques, lower input costs,
and boost total productivity [17].

The standardized vegetation index (SVI) is
one of the most important instruments for climate
smart agriculture [18]. SVI, a measurement of plant
development and cover, is created using satellite
data. Since drought conditions may significantly
affect agricultural productivity, the indicator is
especially helpful for keeping track of them. The
Enhanced Vegetation Index (EVI), a gauge of
vegetation greenness, may be used to determine
the SVI. The EVI is then normalized to produce an
index that may be utilized to contrast various places
and periods [19]. SVI may be used as a drought
mitigation tool and to detect water stress early on
by tracking plant growth and cover [20].

This study operationalizes the SVI via Google
Earth Engine (GEE) to deliver scalable, near real
time drought intelligence for Pakistan. As country
is a climate vulnerable region increasingly beset by
intensifying water scarcity, prolonged dry spells, and
more frequent and severe extreme weather events,
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thus enabling proactive, data driven responses
to agricultural stress. With employing SVI to
enhance climate smart farming decision making
is especially critical during periods of drought as
early detection allows farmers and government
agencies to implement timely interventions for
adjusting irrigation schedules, shifting planting
dates, or selecting drought resilient crop varieties.
This can significantly mitigate yield losses and
reduce systemic vulnerability to water shortages,
ultimately supporting food security and rural
livelihoods [21, 22].

The utility of SVI extends beyond mere drought
assessment, as it provides a robust, spatially explicit
indicator that can inform adaptive land management
strategies, optimize resource allocation, improve
crop yield forecasts, and help buffer agricultural
systems against the escalating impacts of climate
change, including rising temperatures, erratic
rainfall patterns, and accelerated soil degradation.
This study is good to leverage the power of
cloud based remote sensing and Google Earth
Engine to compute, monitor, and map SVI across
Pakistan’s diverse agro ecological zones, where
recurrent droughts, declining groundwater tables,
and extreme climatic variability have rendered
traditional monitoring approaches inadequate.
Pakistan needs an integrated, high resolution,
and operationally feasible drought early warning
system to safeguard national agricultural resilience
in an era of accelerating environmental uncertainty.

This study aims to establish a satellite based,
cloud computing framework for agricultural drought
monitoring in Pakistan using the Standardized
Vegetation Index (SVI). Specifically, it seeks to:

(1) To generate multi decadal (2001-2022) SVI
and EVI time series for Pakistani provinces using
MODIS data within Google Earth Engine;

(2) To characterize mean, monthly, and inter annual
patterns of vegetation stress to identify regional
drought vulnerabilities and seasonal dynamics;

(3) To evaluate SVI’s performance in capturing
agriculturally relevant drought signals compared to
traditional metrics; and

(4) To make the foundation for integrating SVI
analytics into national early warning systems and
climate smart agricultural policies for supporting
targeted interventions in irrigation, crop selection.

2. MATERIALS AND METHODS
2.1. Study Area

Pakistan is a South Asian nation bordered to the
east by India, to the northwest by Afghanistan, to
the west by Iran, and to the northeast by China
(Figure 1). It has a total land size of approximately
881,913 km? and a diverse topography of
mountains, plateaus, and plains. Agriculture
industry contributes significantly to the country’s
economy and employing approximately 42% of the
labour force and accounts for more than one fifth
of GDP share. The farming is heavily dependent
on irrigation, as around 90% of its agricultural
land needs irrigation water. The main crops are
wheat, rice, cotton, sugarcane, and maize, these are
among Pakistan’s for food and export items,also
significant production of fruits and vegetables
such as mangoes, citrus, apples, and potatoes. The
agriculture industry in Pakistan is confronted with
a number of issues, including water scarcity, soil
degradation, and climate change [23]. Pakistan has
experienced severe droughts in recent years and
affecting its agriculture. The agriculture sector is
also vulnerable to floods that can cause extensive
damage to crops and infrastructure [24, 25]. The
Pakistani government has launched a number of
initiatives in response to these challenges, including
irrigation techniques and new methods, to support
climate smart agriculture practices. These initiatives
aim to increase agricultural productivity while
mitigating the negative impacts of climate change
[23]. The government is also investing in the study
and creation of new technologies and practices
to improve the efficiency and sustainability of
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Fig. 1. Study area Pakistan.
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agriculture, as country geography and topography
make it ideal for agriculture which is a significant
contributor to the country’s economy [26]. Though,
country still faces a number of challenges, such as
water scarcity, soil degradation, and climate change,
necessitating the creation of novel solutions and
practices [27].

2.2. MODIS Data Product (MOD13Q1)

The MODI13Ql1 is a product of the Moderate
Resolution Imaging Spectroradiometer (MODIS)
sensor aboard NASA’s Terra and Aqua satellites.
It is a vegetation index dataset, global data is
available that provides information on vegetation
health and productivity at a spatial resolution of
250 meters. This MOD13Q1 data is using in many
applications such as crop monitoring, land cover
classification, and climate change studies [28,
29]. MOD13Q1 provides both the Normalized
Difference Vegetation Index (NDVI) and Enhanced
Vegetation Index (EVI) data products. However, in
this study only MODIS derived EVI product has
been used.

2.3. Enhanced Vegetation Index (EVI)

MODIS is an excellent sensor system, this is one
of NASA’s most extensively used in scientific
studies. MODIS product/vegetation datasets is
the MOD13Ql, this global level product provides
reliable and high quality measures of vegetation
health and productivity. This has a spatial
resolution of 250 meters with biweekly temporal
coverage, and is widely used in the scientific and
operational areas. The MOD13Q1 data is useful for
applications such as crop monitoring, land cover
categorization, drought assessment, phenological
analysis, and long term climate change studies. Its
uniform processing, substantial archive since 2000
and multi sensor continuity make it a must have
resource for understanding terrestrial ecosystem
processes at regional and global scales [28-31].

The EVI equation includes blue and red bands, as
well as the near infrared band. The equation is:

(NIR-Red)

EVI = 2.5 x NIR + 6 X Red — 7.5 X Blue + L (D

Where, NIR is the reflectance in the near infrared
band, Red is the reflectance in the red band, and
Blue is the reflectance in the blue band.

In an attempt to provide a more accurate
measurement of vegetation canopy, the factors in
the equation are employed to lessen the impact of
the aerosol component of the atmosphere on the
vegetation signal. Higher numbers denote more
plant density and good growth, and the resulting
EVI values range from -1 to +1.

2.4. Standardized Vegetation Index (SVI)

The SV is a standardised measure that may be used
to assess the productivity and health of vegetation
in various places and throughout various time
periods, particularly during extreme weather. This
index offers information on the length and severity
of droughts as well as how they affect vegetation
[32]. SVIis derived from EVI by standardizing the
EVI values across time and space:

(EVI — mean (EVI))

SVI = standard deviation (EVI) (2)

Where, mean(EVI) is the average EVI value across
a specified time period and area, and standard
deviation (EVI) is the standard deviation of EVI
across the same time period and area.

SVI evaluation applying MODIS EVI data in
Google Earth Engine (GEE) involves a number of
processes. The accuracy of the study is increased
by first filtering the data from MODIS EVI by date
and area of interest (AOI). The EVI range is then
scaled to -1 to +1 after the filters have been applied
to the data. Each image has statistics computed
for it, such as mean values and standard deviation
[33]. The rescaled EVI data, mean, and standard
deviation numbers are then factored into a formula
to determine the SVI. The mean EVI, and SVI
image are used for visualization. The rescaled EVI
data, mean, and standard deviation numbers are
then factored into a formula to determine the SVI.
The mean EVI, most recent EVI and SVI image are
all included in the data display process using GEE.
This method offers a quick and precise means to
evaluate SVI using MODIS EVI data using GEE
[34]. Provincial wise time series data were retrieved
on monthly SVI data from 2001 to 2022, finally,
mean SVI for whole Pakistan was calculated.

3. RESULTS AND DISCUSSION

The EVI was calculated for the entire Pakistan
region. The mean EVI map shows high vegetation
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productivity (>0.4) along the Indus River corridor
in Punjab and Sindh, driven by irrigation and
agriculture. Lower values (<0.2) dominate arid
regions like Balochistan and the Thar Desert,
reflecting limited biomass. Negative values in
mountainous and urban areas suggest bare soil
(Figure 2). Monthly SVI datasets were used to
obtain the mean SVI index for Pakistan indicating
significant deviations from long term climatological
norms. Negative SVI values (yellow to red)
dominate central and southern regions, reflecting
persistent drought conditions in irrigated and rainfed
agricultural zones. In contrast, positive SVI values
(green) are localized in northern mountainous areas
and in many parts of Balochistan, suggesting above
average vegetation health during the study period

(Figure 3).

3.1. Mean Monthly EVI and SVI Dynamics in
Pakistan (2001 2022)

Figure 4 shows mean monthly EVI and SVI
dynamics in Pakistan during the study period. This
monthly averaged EVI and SVI reveal distinct
seasonal patterns that closely align with the region’s
dual cropping agricultural system. EVI, which
serves as a robust proxy for vegetation density
and photosynthetic activity, exhibits a bimodal
distribution with two pronounced peaks: one in
February (0.153) and another in August (0.164).
These peaks correspond to the growth phases of
the rabi (winter) and kharif (monsoon) cropping
seasons, respectively. The February peak reflects
the vigorous development of rabi crops such as
wheat and mustard, which benefit from winter
precipitation and irrigation. The August peak, the
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Fig. 2. Mean EVI index values in Pakistan.

63°21'13"E 70°115"E 76°41'17"E
1 1 1

seaeo0n Viean SVI 36°46'20"N

e High:3.73

_— e
33°26"10"N- Low:-4.29 - fazeoetonN

30°6'0"NA . -30°6'0"N

.
26°45'50"N- -26°45'50"N
23°25'40"N- I , : 23°25'40"N
N 63°21'13"E 70°115"E 76°41'17"E
A 0 500 1,000 2,000

Kilometers
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Fig. 4. Mean monthly EVI and SVI dynamics in Pakistan
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highest of the year, coincides with the monsoon
season, during which kharif crops like rice and
maize achieve full canopy closure under favorable
moisture conditions. The subsequent decline in
EVI during September and October indicates crop
maturation and harvest, leading to reduced green
vegetation cover.

In contrast, the SVI remains largely neutral
(=0.00) across most months, suggesting relatively
stable. Notably, SVI registers a slight negative
value in October (-0.01), likely reflecting post
monsoon soil drying following the kharif harvest.
However, a modest but meaningful positive shift
occurs in November (0.01) and peaks in December
(0.02), indicating improved soil moisture conditions
coinciding with the sowing and early establishment
of rabi crops. This late year rise in SVI may be
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attributed to winter rainfall, residual soil moisture
retention, or supplemental irrigation, all critical for
supporting the rabi cropping cycle in this semi-arid
agro climatic zone.

The near zero SVI values observed during the
peak EVI months (February and August) suggest
that while vegetation is thriving, the soil moisture
signal is either masked by dense canopy cover
or remains within a balanced range that does not
trigger strong positive or negative SVI responses.
This underscores the complementary nature of EVI
and SVI: while EVI effectively captures vegetation
phenology, SVI provides nuanced insights into
underlying conditions that support or constrain
vegetation growth. Together, these indices confirm
the resilience and productivity of Pakistan’s
agricultural system, which leverages both monsoon
rains and winter moisture (natural or managed)
to sustain year-round cultivation. The 2001-2022
data thus encapsulate a typical, well-functioning
agricultural calendar in Pakistan, characterized by
timely transitions between cropping seasons and
effective moisture management.

3.2. Temporal Dynamics of Vegetation and Soil
Conditions in Pakistan (2001-2022): Insights
from EVI and SVI Time Series

The SVI and EVI derived long term monthly time
series for Pakistan from 2001 to 2022 provide
crucial data on vegetation phenology and soil
vegetation interactions (Figure 5). This reflects the
region’s dominant double cropping system, the EVI
time series shows consistent seasonal trends with
recurring peaks during the kharif (monsoon) season,
particularly in August, and secondary peaks during
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Fig. 5. Monthly time series of EVI.

the rabi (winter) season, primarily in February and
March. The primary forces behind these bimodal
cycles are monsoon rains (June-September), which
support kharif crops like rice and maize, and winter
irrigation and rainfall, which support rabi crops
like wheat and mustard. It’s interesting to note
that while EVI values fluctuate from year to year,
noteworthy increases have been observed recently
(e.g., 2019-2022), suggesting higher vegetation
production possibly linked to improved irrigation
practices, crop management, or favorable climatic
conditions.

In contrast, the SVI time series displays
more dynamic and variable behavior, indicating
significant fluctuations over time (Figure 6). The
early years (2001-2005) show predominantly
negative SVI values (down to —1.18), suggesting
dry soil conditions or sparse vegetation cover, a
marked shift occurs post 2007, with increasing
frequency and magnitude of positive SVI
anomalies. The most notable surge occurs around
2020-2022, where SVI reaches values exceeding
1.0, indicating exceptionally favorable soil moisture
and vegetation conditions. This upward trend may
reflect changes in land use, increased groundwater
utilization, climate variability (e.g., higher winter
precipitation), or improvements in agricultural
infrastructure. However, the high volatility in SVI
suggests sensitivity to short term weather events,
such as droughts or heavy rainfall, which can
rapidly alter soil moisture dynamics and impact
crop health.

The mean monthly SVI index values were
estimated for Pakistan (Figure 7), This shows

Mean SVI

Fig. 6. Monthly time series of SVI.
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the monthly variation in vegetation stress
across Pakistan from January to December. The
highest SVI values occur during June—October,
corresponding with the monsoon season and peak
crop growth, particularly in Punjab and Sindh. In
contrast, negative SVI values dominate during the
dry winter months (December-February), indicating
below average vegetation conditions. This seasonal
pattern reflects strong dependence on monsoon
rains and agricultural phenology, with central and
southern regions showing greater variability due to
irrigation and rainfall fluctuations.

Inter annual SVI conditions were observed
using time series SVI in Punjab, Sindh, Khyber
Pakhtunkhwa, and  Balochistan  provinces
respectively in Figures 8(a to d). The SVI for
Punjab shows strong seasonal fluctuations
with distinct peaks during the summer months,
indicating healthy vegetation growth driven by
monsoon rains and agricultural activity (Figures
8(a)). However, the index displays no significant
long-term trend and even suggests a slight decline
after 2015, potentially reflecting increasing water
stress, overuse of resources, or environmental
degradation despite high agricultural productivity.
In Sindh, the SVI exhibits moderate seasonality
and a notable upward trend starting around 2015,
signaling improved vegetation conditions over
time (Figures 8(b)). This positive shift may be
attributed to better irrigation infrastructure, climate
variability, or agricultural development, suggesting
a recovery from earlier periods of drought and
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Fig. 8. Time series SVI in provinces of Pakistan: (a)
Punjab, (b) Sindh, (c¢) Khyber Pakhtunkhwa, and (d)
Balochistan.

land degradation, particularly observed during
2010-2012 and 2017-2018. Khyber Pakhtunkhwa
experiences high variability in SVI, with sharp
peaks and frequent negative values, reflecting its
mountainous terrain and dependence on seasonal
rainfall (Figures 8(c)). The lack of a consistent long-
term trend indicates ongoing ecological instability,
with vegetation remaining vulnerable to climate
extremes and land degradation, highlighting the
need for sustainable land and water management
practices. Balochistan stands out with a remarkable
upward trend in SVI beginning around 2005,
transitioning from very low vegetation levels to
near normal conditions by 2015 (Figures 8(d)).
This significant improvement suggests successful
rangeland restoration, afforestation efforts, or
increased rainfall, marking one of the most positive
environmental developments across Pakistan’s
provinces in the past two decades.

The SVI provides a powerful metric for
assessing vegetation stress and productivity by
quantifying deviations of current vegetation
conditions from long term climatological norms.
Low or negative SVI values typically indicate
below average vegetation performance, often
linked to water stress, drought, or poor soil
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moisture availability, while positive values signify
above average vigor, suggesting favorable growing
conditions. The magnitude of these anomalies offers
insight into the severity of stress or the degree of
productivity enhancement. However, interpretation
must be contextualized: a negative SVI may reflect
natural aridity in rangelands but signal critical stress
in irrigated croplands, where even minor moisture
deficits can compromise yield. Thus, SVI should
not be interpreted in isolation but integrated with
land use, crop type, and hydrological data to avoid
misclassification of ecological states.

Drought is a pervasive and escalating
global phenomenon, characterized by prolonged
deficiencies in atmospheric, surface, or subsurface
water supplies that persist for months or years [35].
Driven by climate change, population growth, and
intensified land use, droughts have become more
frequent, severe, and widespread particularly in
tropical and subtropical regions such as South
Asia. Their impacts include soil retrogression,
desertification, reduced agricultural output,
ecosystem degradation, increased frequency of
wildfires and sandstorms, and heightened socio-
economic vulnerabilities [36-38]. As one of the
most dangerous climate related hazards, drought
directly threatens food security, economic
stability, and rural livelihoods [39], making timely
monitoring and assessment essential for proactive
adaptation and resource allocation [40]. In this
context, remote sensing-based drought monitoring
has emerged as a scalable and cost-effective tool for
tracking spatiotemporal dynamics across vast, data
scarce regions like Pakistan.

This study leverages MODIS derived
Enhanced Vegetation Index (EVI) and Standardized
Vegetation Index (SVI), processed via Google
Earth Engine (GEE), to investigate the evolution
of vegetation stress and resilience over a 22-year
period (2001-2022). GEE enables efficient access
to decades of satellite data, facilitates large scale
analysis, and supports visualization of spatial
trends through maps and time series critical for
collaboration among researchers and decision
makers [41-43]. Drought assessment is critically
important in Pakistan, where arid and semi-arid
climates heighten vulnerability to water scarcity,
threatening agricultural productivity, economic
stability, and social wellbeing [44, 45]. Timely
monitoring enables proactive interventions such as

deploying drought resistant crops [46], optimizing
irrigation, and activating early warning systems
to mitigate impacts on vulnerable communities.
Integrating remote sensing and machine learning
enhances the accuracy and scalability of drought
detection, supporting data driven policy and
resource allocation [47]. Ultimately, robust
drought assessment strengthens climate resilience,
safeguards food security, and contributes to poverty
reduction and sustainable development across
Pakistan’s agricultural landscapes. By analyzing
EVI and SVI jointly, we move beyond passive
observation toward diagnostic assessment: EVI
captures absolute biomass and canopy greenness,
while SVI reveals whether current vegetation
performance deviates significantly positively or
negatively from historical baselines [48, 49].

Pakistan’s agro ecosystem, dominated by
the Indus Basin irrigation network, is particularly
vulnerable due to its arid and semi-arid climate,
heavy reliance on groundwater, and exposure
to monsoon variability. The consistent bimodal
pattern in EVI peaking in February-March (rabi
season) and August (kharif season) confirms the
enduring stability of Pakistan’s dual cropping
system, sustained by canal irrigation and extensive
groundwater extraction [50]. The modest upward
trend in EVI since 2018 aligns with documented
increases in cropping intensity, adoption of high
yielding wvarieties, and expansion of double
cropping into marginal lands, driven by government
subsidies, mechanization, and improved seed
distribution [51, 52].

However, EVI alone cannot distinguish
between sustainable intensification and ecologically
unsustainable practices. Here, SVI provides critical
diagnostic clarity. The emergence of sustained
positive SVI anomalies (> +1.0) after 2007, and
their culmination in record high values during
2020-2022 indicates that vegetation performance
has consistently exceeded historical expectations
over the past 15 years. This shift is not merely
recovery from earlier droughts (evident in persistent
negative SVI during 2000-2006) [53]. It reflects a
systemic transformation in the drivers of vegetation
productivity. Three interrelated factors underpin
this transition: First, intensified water management
driven by proliferation of subsidized tubewells
post 2005 has enabled farmers in Punjab (where
>90% of irrigation is groundwater dependent) to
advance rabi sowing and extend kharif seasons
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beyond natural rainfall limits [54, 55]. Yet this
intensification comes at the cost of severe aquifer
depletion, with the Indus Basin now recognized as
one of the world’s most overstressed groundwater
systems, where extraction exceeds recharge by
100-120% in key districts [56].

Second, improved agronomic practices
including zero till drilling, residue retention, and
precision fertilizer application have gained traction
since 2010 under Climate Smart Agriculture
initiatives, enhancing soil moisture retention and
reducing evaporation, thereby boosting SVI even
under suboptimal rainfall [57]. Third, climatic
amelioration has contributed: recent analyses
confirm an increase in winter precipitation events
linked to shifting mid latitude cyclones and
enhanced moisture transport from the Mediterranean
and Caspian Sea [58]. Though episodic, their
heightened frequency since 2007 has provided
critical supplemental recharge during key sowing
windows, synergizing with managed irrigation and
conservation practices.

Provincial level analysis (Figures 8(a-d))
reveals stark regional contrasts. In Punjab, rising
EVI and increasingly positive SVI since 2015 mask
alarming groundwater decline and a temporary
boost in productivity fueled by non-renewable
aquifer drawdown [59]. In Sindh, moderate EVI
gains coupled with a clear, accelerating SVI rise
since 2015 suggest improved resilience through
infrastructure investments canal lining, floodwater
harvesting, and distributary rehabilitation reducing
conveyance losses without excessive groundwater
dependence [60]. Khyber Pakhtunkhwa exhibits
high SVIvolatility withnolong-termtrend, reflecting
its rain fed, mountainous terrain and vulnerability
to erratic precipitation; however, the province’s
Billion Tree Tsunami afforestation project (2014-
2017) the world’s largest single region reforestation
initiative has significantly restored upland
ecosystems, indirectly supporting microclimatic
stability and groundwater recharge, though its
impact on lowland cropland SVI remains limited
[61, 62]. Most notably, Balochistan demonstrates
the most dramatic transformation: transitioning
from among the lowest SVI values nationally (pre-
2005) to consistently positive anomalies by 2015.
This recovery correlates strongly with community-
based rangeland restoration programs led by
the Balochistan Forest and Range Department,

supported by FAO, UNDP, and ICARDA, which
promoted native species (Prosopis cineraria, Acacia
nilotica, Ziziphus mauritiana), contour bunding,
water harvesting, and regulated grazing resulting
in improved soil moisture, reduced erosion, and
increased biomass all achieved without significant
groundwater extraction [63]. Balochistan thus
offers a replicable model of ecological resilience
grounded in ecosystem-based adaptation rather
than resource exploitation.

The central insight of this study is that a
positive SVI does not equate to sustainability. This
reflects relative performance against historical
norms, not absolute ecological health. In Pakistan
the rising SVI may signal genuine improvement
through better water delivery, conservation
agriculture, or restoration but it may also mask
dangerous tradeoffs as unsustainable groundwater
mining, land degradation, chemical overuse, and
biodiversity loss.

Punjab and parts of Sindh also experience a
more severe self-reinforcing feedback loop: higher
SVI — increased farmer confidence — increased
tubewell pumping — rapid aquifer depletion —
eventual system collapse. Similar patterns have
been observed in other areas where satellite derived
greening concealed a disastrous groundwater
decrease until wells dried up and farming ceased to
be profitable [64].

Pakistan now stands at a point, where short
term productivity gains are being purchased at
the expense of long-term hydrological capital.
Relying on SVI alone as a success indicator risks
incentivizing practices that maximize yield today at
the cost of ruin tomorrow. A farmer achieving an SVI
of +1.5 through 50% more groundwater abstraction
may reap bumper harvests now but face poverty
when the aquifer collapses. Therefore, policy
must evolve beyond measuring “performance” to
evaluating true resilience: the capacity of the agro
ecosystem to maintain productivity under future
stress without depleting its natural capital.

While our analysis leverages robust MODIS
derived EVI and SVI data processed via Google
Earth Engine, several methodological limitations
must be acknowledged. First, the 500 m spatial
resolution of MODIS aggregates heterogeneous
land covers including irrigated fields, fallow land,
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urban patches, and degraded rangelands potentially
smoothing local anomalies and obscuring field scale
dynamics; future studies should integrate higher
resolution sensors such as Sentinel 2 or Landsat 8/9
to resolve fine grained heterogeneity [65].

Second, SVI is sensitive to atmospheric
aerosols, cloud contamination, and sensor
calibration drift, particularly during the monsoon
months (July-September), introducing noise and
data gaps in peak season estimates; rigorous quality
control and temporal gap filling techniques (e.g.,
harmonic regression) are essential [66]. Third, the
absence of a nationwide network of in situ validation
sites measuring soil moisture, groundwater levels,
and crop yields severely limits causal inference;
urgent collaboration between remote sensing
teams, universities (e.g., University of Agriculture
Faisalabad, National Defence University), and
institutions like FAO is needed to establish ground
truth stations across agro climatic zones. Fourth,
SVI captures vegetation response to moisture with
lags of weeks to months, especially for deep rooted
crops such as sugarcane or cotton; integrating
thermal indices (e.g., Land Surface Temperature,
LST; Thermal Condition Index, TCI) could improve
detection of immediate soil moisture stress. Fifth,
SVI cannot distinguish between cultivated crops,
weeds, invasive species, or fallow land a high SVI
value in non-agricultural areas may falsely suggest
“improvement”’; coupling SVI with high resolution
land cover classifications (e.g., GlobeLand30)
would enhance interpretability. Finally, while we
correlate SVI trends with policy interventions (e.g.,
canal lining, afforestation), we cannot quantify
their individual contributions without econometric
modeling or farm level surveys; future research
must combine remote sensing with participatory
rural appraisals and household level water use data
to disentangle climate, management, and policy
drivers.

This study provides actionable intelligence for
designing climate resilient agricultural policies in
Pakistan, proposing five evidence-based priorities.
First, energy and fertilizer subsidies must be
reoriented away from water intensive crops such
as rice and sugarcane toward drought tolerant
alternatives including millets, sorghum, and
chickpeas and scaled up investments in precision
irrigation technologies like drip and sprinkler
systems, as well as solar powered tubewells to

reduce fossil fuel dependence. Evidence from
pilot programs in Punjab demonstrates that drip
irrigation on wheat can achieve 30-40% water
savings without yield loss, yet adoption remains
below 5% due to upfront cost barriers [67].

Second, ecosystem-based adaptation (EbA)
strategies proven successful in Balochistan such
as community managed afforestation using native,
drought tolerant species (Prosopis cineraria,
Acacia nilotica), contour bunding, check dams,
and micro watershed restoration must be replicated
nationwide, particularly in Khyber Pakhtunkhwa
and southern Punjab. These approaches have
demonstrably improved soil organic matter by
22%, reduced runoff by 40%, and increased forage
biomass by 60% over five years in Balochistan,
offering a low input, high resilience model distinct
from groundwater dependent intensification. Third,
Pakistan must establish a National Vegetation
Anomaly  Monitoring  System  (PVAMS),
operationalized through the National Disaster
Management Authority (NDMA) and the Ministry
of Climate Change, featuring real time dashboards
displaying monthly SVI anomalies at the district
level, automated alerts triggered when SVI falls
below -1.0 for three consecutive months, and
linkage to parametric drought insurance schemes
that disburse payouts based on index thresholds
rather than costly and delayed yield assessments
models successfully deployed in India’s Agromet
Advisory System and Kenya’s index based livestock
insurance [68].

Fourth, groundwater governance must be
modernized using remote sensing as an enforcement
tool: areas exhibiting high EVI coupled with
rapidly increasing SVI and declining groundwater
tables should be designated “critical overdraft
zones”, where mandatory metering of tubewells
and progressive pricing for excessive extraction
are enforced mirroring the 35% reduction in
groundwater use achieved in Gujarat, India, through
satellite guided zoning [69, 70].

Fifth, national investment in data infrastructure
and human capacity is critical: training for number
of'experts, agricultural extension officers to interpret
EVI/SVI maps, launching mobile applications
delivering localized SVI advisories in Urdu,
Pashto, and Balochi, and establishing a centralized,
open access national repository of in situ soil
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moisture, yield, and groundwater data all integrated
with Google Earth Engine would empower farmers
and policymakers alike with timely, actionable
intelligence. Pakistan’s agricultural system is not
failing it is adapting, innovating, and, in many
places, thriving. The sustained rise in EVI and the
dramatic surge in SVI since 2007 stand as testament
to the ingenuity of millions of smallholder farmers
and decades of public investment in irrigation
infrastructure and extension services. But we must
ask: at what cost? The most alarming finding of
this study is not the absence of progress, but the
dangerous illusion of progress. Rising SVI values
in Punjab and Sindh may reflect short term gains
achieved through the liquidation of Pakistan’s
most vital natural asset: its groundwater. The same
SVI signal that tells us “vegetation is doing better
than ever” may also be screaming: “the aquifer is
dying”. True resilience is not measured by how
well crops grow in a good year it is measured
by how well the system survives in a bad one.
Balochistan teaches us that ecological restoration
can build resilience without exploitation. Sindh
shows that infrastructure efficiency can decouple
productivity from groundwater dependence. Punjab
demonstrates the peril of intensification without
regulation.

We urge policymakers to shift from reactive
crisis response to proactive, data driven governance.
The tools exist: MODIS, Google Earth Engine,
SVI, and emerging ground networks. The future
of Pakistan’s food security does not lie in pumping
more water it lies in managing less, smarter, and
fairer. Continued monitoring of EVI and SVI is
not optional, it is foundational. This can be good in
management.

4. CONCLUSIONS

This study presents the first long term (2001-
2022), province scale assessment of agricultural
drought across Pakistan using the Standardized
Vegetation Index (SVI) derived from MODIS EVI
data processed in Google Earth Engine (GEE).
Our analysis reveals distinct regional trajectories:
Punjab shows a concerning post 2015 decline in
SVI, indicative of mounting water stress despite
intensive irrigation; Sindh and Balochistan exhibit
significant recovery, likely attributable to improved
water infrastructure and large scale afforestation
efforts; while Khyber Pakhtunkhwa remains highly

volatile, reflecting its rainfall dependent ecosystems.
This work advances drought monitoring in semi
arid, data scarce regions by introducing an open
source, reproducible GEE workflow for operational
SVI computation and statistically robust drought
classification, the spatiotemporal behavior of SVI
corresponds closely with documented drought
events and regional patterns of agricultural water
stress across Pakistan particularly in major
cropping zones such as Punjab and Sindh. This
alignment suggests that SVI, derived from satellite
based vegetation dynamics, captures signals
relevant to agricultural drought conditions beyond
purely meteorological indicators like precipitation
based indices. The SVI outputs offer practical
utility for operational drought monitoring and can
inform climate smart agriculture (CSA) decision
making including strategic crop planning, irrigation
prioritization, and early warning dissemination
empowering provincial and national agencies to
target interventions, allocate resources efficiently,
and strengthen resilience in Pakistan’s increasingly
climate vulnerable farming systems.
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