
Proceedings of the Pakistan Academy of Sciences: A	  � Pakistan Academy of Sciences
Physical and Computational Sciences 62(3): 247-261 (2025)
Copyright © Pakistan Academy of Sciences
ISSN (Print): 2518-4245; ISSN (Online): 2518-4253
http://doi.org/10.53560/PPASA(62-3)698

Research Article

————————————————
Received: July 2025; Revised: August 2025; Accepted: September 2025
* Corresponding Author: Muhammad Raza <raza.physics@kiu.edu.pk>

Wind Energy Modelling and Machine Learning Approach to Study 
Wind Direction Effect

Muhammad Raza1*, Adeel Tahir2, Zeshan Iqbal3, Zaheer Uddin3, Ejaz Ahmed4,
Majid Hussain5, Arif A. Azam3, and Naeem Sadiq5

1Department of Physics, Karakoram International University, Gilgit-Baltistan, Pakistan
2Department of Physics, Federal Urdu University of Arts, Science & Technology,

Karachi, Pakistan
3Department of Physics, University of Karachi, Karachi, Pakistan

4Department of Physics, Model College for Boys G-6/3, Islamabad, Pakistan
5Institute of Space Science & Technology, University of Karachi, Karachi, Pakistan 

Abstract: Wind energy is one of the green renewable energy sources that is available everywhere. The wind-generated 
electrical energy is much less than the available wind potential. No windmill can even harness 50% of the available 
wind energy. A lot of research investigations are still needed to explore and harness the maximum energy from wind 
potential. This work is one of such series of research, in which we modeled wind speed using the Weibull distribution 
through a Python program that uses the least square method based on Python built-in functions and evaluated the 
shape and scale parameters of the distribution. The program also compares parameters calculated by other existing 
methods. The Python program based on the least square method fits the Weibull distribution well compared to the 
existing methods. The maximum value of scale parameters was found in June (more than 6.2), the corresponding 
value is also close in May, where it is more than 6.1; the other two months that follow June and May (July and 
September) have scale parameters near 5.7. It shows that the wind potential is maximum in June, and reasonable wind 
energy is available in May, July, and September. The effect of wind direction on the modelling of wind speed is also 
investigated. Perhaps it is the first study that involves wind direction in wind speed modelling. Two different Artificial 
Neural Network Architectures were studied with and without wind directions in the input. It was found that the results 
improve if wind direction is also taken in the list of input parameters. The Root Mean Square Error is the least (RMSE 
= 0.7224) for the model which includes wind direction in the input layer, the performance indicator (0.5219) is also 
the best for this architecture as compared to the other three.

Keywords: Weibull Distribution, Wind Energy Modelling, Python Programming, Least Squares Method, Machine 
Learning, Artificial Neural Networks (ANN), Wind Direction.

1.    INTRODUCTION

Wind speed prediction through meteorological 
parameters is a critical area of research in renewable 
energy, particularly for assessing wind energy 
potential. The Weibull distribution has emerged as a 
widely adopted statistical model for characterizing 
wind speed data due to its flexibility in capturing the 
stochastic nature of wind patterns. Numerous studies 
have explored methods to estimate the Weibull 

parameters (shape k and scale c) and evaluate their 
accuracy, often leveraging computational tools and 
regional wind datasets. Elahi et al. [1] developed a 
Python library, windz, incorporating six methods, 
viz., Method of Moments (MoM), Empirical 
Method (EM), Energy Pattern Factor Method 
(EPFM), Maximum Likelihood Method (MLM), 
Modified Maximum Likelihood Method (MMLM), 
and Maximum Entropy Principle (MEP), to 
analyze wind speed data from three Pakistani cities 



(Harnai, Jacobabad, Talagang) [1]. Their findings 
highlighted the Modified Maximum Likelihood 
Method (MMLM) as the most efficient, while the 
graphical method was deemed the least effective. 
Similarly, Zahid et al. [2] introduced a computer 
package for wind speed modelling, emphasizing 
the utility of MMLM and MLM through statistical 
error tests (Mean square, Chi-square, R-square). 
Regional Studies in Pakistan provided information 
on the viability of site-specific wind energy. Khan 
et al. [3] compared the coastal wind profiles of 
Gwadar and Pasni, revealing greater stability in the 
Gwadar (parameter of form k = 4 - 6), but greater 
wind energy density in Pasni. Khan et al. [3] also 
compared four methods (MoM, EM, EPFM, MLM) 
using Jiwani’s wind data (1998 - 2007) and found 
that while all methods yielded nearly identical scale 
parameters (c), MLM provided the best agreement 
with measured mean wind speeds [4, 5]. However, 
in a separate study analyzing Ormara’s data, 
Khan et al. [4] concluded that MoM, EMP, and 
MLM outperformed MMLM in estimating shape 
parameters (k), with differences within 0.3. These 
discrepancies underscore the context-dependent 
efficacy of parameter estimation methods. 

Recent studies have proposed novel 
approaches to improve accuracy. Uddin and Sadiq 
[6] introduced the Method of Quartiles (MOQ), 
which calculates k and c using the first and third 
quartiles. This method has demonstrated lower 
values ​​of the Akaike Information Criterion (AIC) 
and reduced overestimation of wind density 
compared to traditional methods, positioning MOQ 
as superior to cities such as Karachi, Hyderabad, 
and Quetta. Rajput et al. [7], through advanced 
computational efficiency, suggested a simplified 
gamma function formula for estimating scale 
parameters, achieving an error <0.2% and validating 
MLM as the most accurate method for Hyderabad 
wind potential. They classified Hyderabad as 
the most promising wind power site in Pakistan, 
followed by Karachi, due to consistent wind speeds 
that exceed the turbine cutting thresholds. On the 
other hand, cities like Peshawar and Lahore showed 
insignificant potential except for specific months. 
The integration of programming tools significantly 
enhanced validation processes.

Rehman et al. [8] developed a Python-based 
Newton-Gauss technique, showing minimum 
RMSE and AIC values ​​for four cities, thus offering 

a robust alternative to established methods. 
These innovations highlight the growing role 
of computational tools in improving parameter 
estimation accuracy. They approved the Python 
programs to automate the estimation of parameters, 
emphasizing the importance of software in modern 
wind energy research.  

Uddin et al. [9] employed a least squares 
method (LSM) to evaluate Lagrange multipliers 
for MEP, reaching better adjustments than classic 
MEP through Python-based error metrics (RMSE, 
Chi-Square). While the Weibull distribution is 
widely used, Sadiq [10] demonstrated that extreme 
(generalized) value distributions have better 
modeled continuous and seasonal winds of Karachi 
with 95% confidence. This discovery emphasizes 
the need to select a specific context model, 
particularly in coastal urban environments.

The forecast of wind speed evolved 
significantly with the integration of machine 
learning techniques (ML) and deep learning 
(DL), particularly when combined with weather 
parameters. Although probabilistic models such 
as the Weibull distribution remain fundamental, 
recent studies emphasize the role of data-oriented 
approaches to improve accuracy and address the 
stochastic nature of wind patterns in Machine 
Learning and Hybrid Models for Wind Speed 
Prediction. Artificial Neural Networks (ANNs) and 
Genetic Expression Programming (GEP) emerged 
as robust tools for short-term wind speed forecast. 
Ghorbani et al. [11] compared ANN, GEP, multiple 
linear regression (MLR), and the persistence method 
using autocorrelation functions to determine input 
delays for wind speed data per hour from Kersey, 
Colorado. Their findings revealed that ANN and 
GEP performed comparably, with MLR surpassing 
MLR and persistence. Similarly, Demolli et al. [12] 
demonstrated the transferability of ML models (for 
example, random forest, increased gradient) for 
long-term wind energy forecasting in geographical 
places, highlighting their usefulness in the pre-
assessment of the feasibility of wind farms in 
undeveloped areas.   

Hybrid models increase predictive accuracy. 
Zhu et al. [13] suggest an amalgamation of 
convolutional neural networks and a Multilayer 
Perceptron for the wind farm data. Hur [14] 
proposed a two-stage method using an Extended 
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Kalman filter to estimate, and then a neural network 
for short-term forecasting of the wind speed. These 
hybrid approaches illustrate practical applications 
in wind power systems. Li and Jin [15] have also 
developed a hybrid model that combines resource 
selection, machine learning, and multi-objective 
optimization. Its application to the wind speed data 
from Penglai, China, generated unique objective 
models. Advanced uncertainty modelling related 
to convective wind was addressed by Ehsan et al. 
[16] by comparing Quantile Regression Forests 
and Bayesian Additive Regression Trees for the 
tempest. The QRF stood out in points and PIS 
estimates, reducing systematic errors and supporting 
emergency preparation during the extreme climate.  

Regional studies emphasize the adaptability of 
ML models to local weather conditions. Türkan et 
al. [17] predicted the wind speed to 30 m high using 
10 m data in Türkiye, identifying Support Vector 
Machines (SVM) as the most accurate method. 
In Malaysia, Hanoon et al. [18] evaluated the 
regression of the Gaussian process (GPR), increased 
the trees (BT), and SVR in 14 stations, with GPR 
reaching higher accuracy, despite the challenges in 
the correlation force. These studies emphasize the 
importance of adapting models to regional wind 
regimes and integrating pre-processing techniques 
to improve performance. 

While existing studies validate ML/DL 
models for wind speed forecasting, challenges 
persist in dealing with non-stationary data and 
incorporating various weather variables (e.g., 
temperature, humidity). Hanoon et al. [18] 
emphasized the need to integrate optimization 
algorithms to improve the correlation between the 
expected and observed values. These gaps present 
opportunities for new structures, such as the ANN-
Weibull hybrid proposed in this study, which takes 
advantage of the meteorological parameters for 
probabilistic forecasting. Han et al. [19] proposed a 
hybrid model that integrated research and weather 
forecast simulations (WRF), decomposition of the 
empirical mode of the complete set (Ceemdan), and 
a bidirectional CNN LSTM network optimized by 
attention mechanisms.

Cadenas and Rivera [20] employed 
Autoregressive Integrated Moving Average 
(ARIMA) models to predict wind speed in Oaxaca, 
Mexico, incorporating wind direction along with 

temperature and moisture, and reported greater 
accuracy in the capture of seasonal wind variability. 
Similarly, Foley et al. [21] used Support Vector 
Machines (SVM) to predict the production of wind 
energy in Ireland, emphasizing the direction of the 
wind as a critical factor to resolve the dynamics 
of the coastal wind. Their work has shown that 
directional data reduced RMSE by 18% compared 
to the models excluding this variable.

Lydia et al. [22] developed a wind speed forecast 
system using SVM and K-Nearest Neighbors (K-
NN) with inputs, including wind direction, but its 
structure lacked the nonlinear modelling capacity 
of the RNAs to deal with complex interactions 
between variables. Liu et al. [23] proposed a hybrid 
forecast model that combines transformations of 
Wavelets and Gradient reinforcement machines, 
but their approach did not explore ANS’ potential 
to autonomously learn hierarchical characteristics 
from directional and temporal data. The absence 
of an ANN-based framework in these studies 
represents a difference in the literature, as ANS 
specifically suits non-linear relationships and 
sequential dependence, adapted to the sequential 
dependence contained in meteorological datasets. 
The task addresses this difference by developing an 
ANN-based model that integrates the air direction 
with temperature, humidity, and the precursor 
air speed values, using Python libraries such as 
TensorFlow and causes for implementation. Our 
approach not only creates fundamental insights of 
pre-studies but also introduces a novel application 
of ANNs to increase prediction accuracy in air 
speed modelling.

2.    MATERIALS AND METHODS

Weibull Distribution is one of the most widely used 
distributions for modelling wind speed distributions. 
Shape ( ) and a scale parameter ( ) characterized 
this distribution through its cumulative distribution 
function (CDF) as: 

(1)

Where  is a function that provides the 
cumulative probability of observing a particular 
wind speed, and   is the wind speed. The shape 
parameter determines the shape of the distribution 
(e.g., spread or skewness) through any of the  
< 1 (high frequency of low wind speeds),   = 1 
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(represents exponential distribution; wind speeds 
are randomly and uniformly distributed over time), 
or  > 1 (high frequency of high wind speeds). The 
scale parameter ( ) represents the characteristic 
wind speed, indicating the range or magnitude of 
wind speeds. Higher values of   signify stronger 
average wind speeds in the region being analyzed. 
The Probability Density Function (PDF) can be 
presented as [24]:

(2)
 

Where  represents the likelihood of 
wind speed occurring at a specific value, showing 
how wind speeds are distributed over the random 
variable  (e.g., time, measurement). To estimate 
scale and shape parameters, different methods have 
been developed. The following methods are utilized 
in our study.

2.1. Method of Moments (MoM):

This method utilizes the mean and variance of the 
data to estimate the Weibull parameters [25]. The 
shape parameter  can be estimated by solving the 
following equation: 

(3)

Where  standard deviation of the wind speed data 
and  is the Gamma function. Once  is obtained, 
the scale parameter  is also calculated by using the
following equation: 

(4)

2.2. Empirical Method (EM)

This method relies on empirical relationships 
derived from the mean and standard deviation of 
the wind speed data [26]. To estimate the shape 
parameter ( ), the following empirical formula is 
used.

(5)

Where, σ /   = C, which is known as the coefficient 

of variation. Once  has been estimated, the scale 
parameter ( ), also calculated through the relation:

(6)
 

We used Python to calculate .

2.3. Maximum Likelihood Method (MLM)

The MLM estimates the parameters  and  by 
maximizing the likelihood function [27]. The 
optimization conditions can be used to find the 
values of  and .

(7)

(8)

Where  represents the frequency or number 
of observations (e.g., recorded wind speed 
occurrences) in the ith bin or interval.

2.4. Least Squares Method (LSM)

The least squares method is used by minimizing the 
square difference between recorded and fitted values 
[28]. It is an iterative method; the iteration stops 
once the termination criteria are reached. Python 
built-in library for least square fit was used to model 
the Weibull distribution. The program finds the new 
values of the probability distribution p (predicted) 
and compares them with the corresponding known 
values p (recorded). The sum of squares errors is 
calculated by the following formula.

(9)

The program determines the scale and shape 
parameters by minimizing SSE.

2.5. Neural Network Architecture

The Artificial Neural Network method is a machine 
learning technique that discovers the hidden 
relationship between an output variable and a set of 
input variables. It works on a pattern like the way our 
brain. It makes use of neurons that link output and 
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input variables through one or more hidden values 
in a hidden layer between the output and input 
variables [29]. In ANN methods, the data is divided 
into three parts; the main part consists of more than 
50% of the data is used to train the network. Once 
the network is trained, the second part of the data is 
used for testing the trained network. Finally, the last 
part of the data is used to validate the network. An 
overall check is also carried out on the complete set 
of data. The goodness of the network is measured 
by a couple of statistics: the correlation coefficient, 
the Root Mean Square Error, and the Performance 
of the network. If the correlation coefficient in 
training, testing, validation, and overall check is 
significant, the network is considered reliable; 
further reliability check is done with the lowest 
value of RMSE, and performance coefficient.

In general, there are three layers, known as input, 
hidden, and output layers. The data is fed into 
input layers having one or more input parameters, 
and the values in the hidden layer are generated 
using random weights and input values fed to an 
activation function. The hidden layer then generates 
output values using an activation function. A 
comparison is made between generated output and 
recorded output; if the difference is insignificant, 
the network is considered as trained; otherwise, a 
backward feedback error analysis generates new 
weights in the input layer for new values generated 
for the hidden layer. The process continues till the 
network is well-trained. The neurons in the hidden 
layer may be varied for optimized results.

In the present study, the input variables were 
Temperature and Humidity, whereas the output 
variable was wind speed. A hidden layer with 10 
neurons was used to train the network. To notice the 
influence of the wind direction on the wind speed. 
The wind direction is also incorporated in the input 
parameters. A precursor network is also trained in 
this study with the same parameters. One of the 
four ANN networks is shown in Figure 1.    

2.6. Wind Energy Potential

Wind energy potential mainly depends on the wind 
speed of the potential site; the other factors on 
which it depends are the area swept by the wings of 
the wind turbine and the air density of the location. 
The air density varies from site to site and depends 
on the altitude and air temperature. If A is the area 

swept by the rotors in (m2), ρ is the air density in (kg 
m-3), and v is the wind speed in (m s-1), the power in 
watts is given by the following formula [30]:

(10)

Here  is the average value of the cube of the wind 
speed. To make this power independent of the area 
of the rotors, we find fractional power or power 
density (average power per unit area in (watts m-2) 
and is given by:

(11)

Wind potential for Karachi City for each month 
from January to December was calculated using the 
above formula.

2.7. Statistical Errors for Validation of Designed 
Models

The validity of designed models has been checked 
by the Mean Absolute Error (MAE), Root Mean 
Square Error (RMSE), Chi-Square Test (χ²), and 
Kolmogorov-Smirnov (KS) Test are calculated by 
using Equations (12) to (15) [31].

(12)

Fig. 1. The ANN architecture with (a)Temperature 
and Relative Humidity, (b) Temperature and Relative 
Humidity, and Wind direction in the input layer.
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(13)

(14)

and

(15)

3.    RESULTS AND DISCUSSION

The demand for renewable energy has been 
increasing day by day. Different available 
Renewable potentials around the world have been 
exploited and harnessed to generate electricity. 
Wind is one of the renewable energies that has 
potential in almost every part of the world. Weibull 
distribution with two parameters is frequently used 
in modelling wind speed distributions. To estimate 
the parameters of the Weibull distribution, various 
techniques and methods have been developed. In 
this study, we used the method of least squares to 
calculate the parameters using a built-in Python 
function. A Python program was developed to carry 
out the calculations and to estimate the parameters. 
The built-in function works well if initial conditions 
are close to the real values of the distribution 
parameters, and the convergence becomes faster. 
To do so, we used the fact that most of the scale 
parameters are greater than 2, and the value of the 
shape parameter can be written as a function of 
the scale parameter. This formula was given as the 
input parameter.

The program also computes the parameters 
using the Method of Moments (MoM), the 
Empirical Method (EM), and the Maximum 
Likelihood Method (MLM) to compare the results. 
Table 1 gives the estimated values of the scale and 
shape parameters computed by these methods. Both 
the values of scale and shape parameters are higher 
for estimation by the least square method, except 
in one or two months. Hussain et al. [32] also 
studied the wind speed distribution of the coastal 
region of Karachi. They also used the maximum 
likelihood method for estimation of shape and 
scale parameters. The average value of the shape 
parameter for 10 m height wind data was 3.3; the 

corresponding average value in our study is 3.5. The 
PDF generated by the estimated values of the shape 
and scale parameters of the Weibull distribution is 
shown in Figures 2 and 3. The PDFs generated by 
the least square method are good representatives 
of wind speed distribution; these PDFs cover 
excellently the histograms generated by recorded 
wind speed data in almost all recorded data. In 
July, PDFs generated by all the methods coincide 
perfectly. Visually, it looks like the least method 
gives the best results. Now we have compared 
quantitatively the four different statistical errors 
that were computed to compare the performance of 
the methods used in this work for the calculations 
of the Weibull parameters and the generation of the 
PDF. Table 2 shows the values of errors (RMSE, 
MAE, Chi-Square, and Kolmogorov-Smirnov) 
from January to December. The least-square results 
give lower values of these statistical errors except 
for March, August, and October; however, the errors 
are not very far from each other. The Kolmogorov-
Smirnov errors for the least square methods are 
lower except for March, August, and October. 

Fig. 2. Comparison of PDFs generated (Jan-June) with 
the determined values of shape and scale parameters 
using four estimation methods and the recorded wind 
speed distribution histogram.
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Figure 4 shows the monthly wind potential for 
Karachi City. The wind potential was calculated 
using equation 11, for Karachi from January to 
December. The wind potential is maximum for 
June. From April to September, the wind speed is 
relatively high, so the wind potential is reasonably 
good for these months. In the months from October 
to March, wind speed is relatively low, so the wind 
potential compared to other months is low. 

Wind modelling was done by many 
researchers in different studies by considering 
different meteorological parameters as input, but 
the wind direction was not considered in wind 

Fig. 3. Comparison of PDFs generated (July-Dec) with 
the determined values of shape and scale parameters 
using four estimation methods and the recorded wind 
speed distribution histogram. Fig. 4. Monthly wind potential in KW for Karachi city.

  k c k c k c
  January May September
Least square 2.4245 2.9378 4.5632 6.0117 5.3670 5.7775
MoM 2.3514 2.9291 4.5586 6.1212 5.4234 5.8488
EM 2.3661 2.9288 4.5253 6.1238 5.3751 5.8518
MLM 2.3110 2.9688 4.4140 6.1210 5.2400 5.8533
  February June October
Least square 2.2954 3.2365 3.8950 6.5716 3.0384 4.2200
MoM 2.1081 3.3881 3.3063 6.2710 2.9189 4.0384
EM 2.1273 3.3882 3.3037 6.2712 2.9257 4.0380
MLM 2.1030 3.4152 3.2930 6.2634 2.9170 4.0502
  March July November
Least square 2.8366 4.7310 4.9434 5.8680 2.3856 2.9270
MoM 2.8108 4.5184 4.9640 5.8698 2.4324 2.8296
EM 2.8195 4.5178 4.9229 5.8726 2.4437 2.8293
MLM 2.8040 4.5309 4.9460 5.8717 2.3910 2.8750
  April August December
Least square 4.4608 5.1896 5.1021 5.2883 2.2782 2.8058
MoM 4.1712 5.2582 4.5405 5.2244 2.3243 2.7144
EM 4.1413 5.2604 4.5035 5.2269 2.3394 2.7141
MLM 3.8750 5.2578 4.5160 5.2252 2.3000 2.7599

Table 1. The shape and scale parameters of the Weibull distribution were calculated from four methods for January to 
December for Karachi city.

	 Wind Energy Modelling	 253



speed modelling. However, some researchers have 
used wind direction for wind energy analysis. Carta 
et al. [31] developed a joint probability distribution 
based on wind speed and wind direction for wind 
energy analysis [33]. Wang and Liu [34] used a finite 
mixture statistical distribution to assess wind energy 
potential using wind speed and wind direction data. 
They used a von Mises mixture distribution with 
various parameters for wind direction. Narain et 
al. [35] used the wake effect of wind turbines to 
investigate the effect of wind direction on wind 
energy potential. Mata et al. [36] studied the effect 
of wind direction on wind power output; they used 
three models for wind potential exploitation based 
on wind speed and wind direction shear. Models 
were based on blade elements and actuator disc 
representations.

We used an Artificial Neural Network to 
comprehend the effect of wind direction. We 
proposed two methods, one with temperature 
and humidity as input, and the second one as a 
precursor method. In each of the two methods, we 
further assessed each method with and without 

wind direction. All together four different ANN 
architectures were investigated in this work. 
 

First, we consider the ANN architecture in 
which we modeled the wind speed distribution 
using temperature and moisture as input parameters. 
The results of the modelling are shown in the 
Figures. 5 and 6. Figure 5 depicts the regression 
analysis of the training, testing, validation, and 
overall performance of the model. Our results are 
not very promising as each R is less than 80%. 
Figure 6 portrays the comparison of the input wind 
speed distribution and the output generated by 
the ANN model. The conclusion made in Figure 
5 is also verified by Figure 6; the overlap is not 
favorable. Ghorbani et al. [37] also used ANN to 
model wind speed distribution for Tabriz, Iran. The 
input parameters in ANN were Air temperature, 
air pressure, relative humidity, and precipitation. 
They used three different models having n, 2n, and 
2n+1 neurons in the hidden layer. The coefficient 
of correlation for each of these models was above 
95%. The wind pattern in Karachi does not show 
such promising results.

Fig. 5. Regression analysis of Testing, training, validation, and overall wind speed output, the input parameters are 
daily average temperature and relative humidity.
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To investigate the impact of the wind direction 
in the ANN modelling, we added wind direction to 
the input parameters of the previous model. Figure 
7 furnishes the R (correlation) values ​​between the 
training (0.894), the test (0.839), and the validation 

phases (0.854). Figure 7 depicts a stronger 
correlation between the predicted and observed 
wind speeds compared to the previous model 
(R = 0.785-0.816). Figure 8 illustrates similar 
results as shown in Figure 4, i.e., the comparison 
of recorded and modeled values of wind speed. 
The overlapping of recorded and modeled values 
is relatively better in Figure 8 compared to that in 
Figure 6 and demonstrates optimized modelling 
results due to wind direction incorporation in the 
list of input parameters.

In the second ANN architecture, we employed 
precursor values of temperature and Humidity to 
predict wind speed.  The model’s performance shows 
a moderate correlation during training, testing, and 
validation phases, with an overall correlation of R 
= 0.798. However, the test and validation metrics 
reveal relatively weaker performance, with R = 
0.702 for testing and R = 0.670 for validation, as 
illustrated in Figure 9, indicating that this network 
underperforms compared to earlier models. Figure 
10 further authenticates the results shown in Figure 
9. Figure 10 shows the comparison of the input 

Fig. 6. Comparison of recorded and ANN modelled wind 
distributions by using daily temperature and relative 
humidity.

Fig. 7. Regression analysis of testing, training, validation, and overall wind speed output; the input parameters are 
daily average temperature, relative humidity, and wind direction.
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wind speed distribution and the output generated 
by the ANN model. Again, the results are not very 
promising as each R is less than 80%. The conclusion 
made in Figure 9 is also verified by Figure 10. Jamil 
and Zeeshan [38] studied wind speed modelling for 

wind speed data of Gujarat, India, using ANN. They 
also used precursor values of wind speed to predict 
current wind speed. The coefficient of correlation 
between predicted and recorded values of wind 
speed was found to be above 98%. Again, the wind 
speed pattern of Karachi does not show such high 
values for the correlation coefficient.

In the second case, the influence of wind 
direction in precursor modelling is depicted in 
Figures 11 and 10. We incorporated wind direction in 
the input list of the previous model. Figure 11 shows 
the R values for the training (R = 0.837), testing (R 
= 0.807), and validation (R = 0.803). This attests to 
a significant improvement in the correlation by the 
inception of wind direction in the input parameters. 
Figure 12 illustrates the comparison of recorded 
and modeled values of wind speed. By comparing 
Figures 10 and 12, it is obvious that the overlapping 
of recorded and modeled values is exceptionally 
better than in Figure 10. It further elucidates the 
improvement in the results due to the inclusion of 
wind direction in the list of input parameters.

Fig. 8. Comparison of recorded and ANN modelled 
wind distributions by using daily temperature, relative 
humidity, and wind direction.

Fig. 9. Regression analysis of Testing, training, validation, and overall wind speed output, the input parameters are 
precursor values of daily average temperature and relative humidity.
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The two cases scrutinized above for wind 
modelling with and without wind direction ascertain 
that wind direction is an important input parameter 
for wind speed forecasting. The addition of wind 
direction mitigates the Root Mean Square error and 
augments the performance of the modelling (see 

Table 2). Li and Shi [39] compared three different 
ANN models that are used to predict the wind 
speed of two sites in North Dakota. They used Back 
Propagation NN, Adaptive Linear Element NN, and 
Radial Basis Function NN. The RMSE values in the 
prediction of wind speed using three ANN models 

Fig. 10. Comparison of recorded and ANN modelled 
wind distributions by using precursor values of daily 
temperature and relative humidity.

Fig. 11. Regression analysis of Testing, training, validation, and overall wind speed output. The input parameters are 
precursor values of daily average temperature, relative humidity, and wind direction.

Fig. 12. Comparison of recorded and ANN modelled 
wind distributions, precursor values of daily temperature, 
relative humidity, and wind direction.
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were more than 1.25 in each case. However, the 
four different ANN architectures in this study show 
RMSE values between 0.72 and 0.96.

Table 3 quantifies the RMSE and performance 
values between different input configurations for 
wind speed prediction, reinforcing the critical role 
of wind direction in enhancing model accuracy. 
Notably, incorporating wind direction consistently 
reduces Mean Squared Error (MSE), a key indicator 

of prediction error, across both precursor-inclusive 
and precursor-exclusive models. For instance, 
without precursors, adding wind direction (T, H & 
D) lowers MSE by 21.5% (from 0.9204 to 0.7224).  
With precursors, including wind direction (T, H, D 
& Precursor), reduces MSE by 12.9% compared to 
the precursor-only model (from 0.9633 to 0.8388).  
Table 4 shows the statistical testing and respective 
significance level.

Least square MoM EM MLM Least square MoM EM MLM

Ja
nu

ar
y

RMSE 0.084 0.083 0.083 0.085

Ju
ly

RMSE 0.07 0.07 0.071 0.07
MABE 0.076 0.077 0.077 0.078 MABE 0.047 0.046 0.047 0.047

Chi 0.082 0.076 0.078 0.072 Chi 0.088 0.091 0.085 0.088
Kolmo-S 0.142 0.142 0.142 0.142 Kolmo-S 0.176 0.172 0.18 0.176

Fe
br

ua
ry

RMSE 0.073 0.095 0.093 0.096

A
ug

us
t

RMSE 0.072 0.049 0.052 0.051
MABE 0.05 0.054 0.053 0.054 MABE 0.058 0.041 0.042 0.041

Chi 0.05 0.047 0.046 0.047 Chi 1.251 0.511 0.479 0.49
Kolmo-S 0.15 0.27 0.261 0.277 Kolmo-S 0.13 0.091 0.106 0.101

M
ar

ch

RMSE 0.141 0.132 0.132 0.132

Se
pt

em
be

r RMSE 0.057 0.06 0.058 0.051
MABE 0.084 0.078 0.078 0.078 MABE 0.043 0.045 0.044 0.038

Chi 0.133 0.127 0.128 0.127 Chi 0.289 0.306 0.28 0.219
Kolmo-S 0.405 0.379 0.379 0.38 Kolmo-S 0.128 0.14 0.132 0.102

A
pr

il

RMSE 0.058 0.068 0.069 0.073
O

ct
ob

er
RMSE 0.108 0.102 0.102 0.103

MABE 0.039 0.04 0.04 0.041 MABE 0.072 0.065 0.065 0.065
Chi 0.075 0.049 0.047 0.036 Chi 0.151 0.145 0.146 0.143

Kolmo-S 0.129 0.207 0.212 0.225 Kolmo-S 0.282 0.278 0.277 0.279

M
ay

RMSE 0.076 0.078 0.082 0.096

N
ov

em
be

r RMSE 0.085 0.084 0.085 0.084
MABE 0.05 0.051 0.054 0.06 MABE 0.078 0.076 0.076 0.077

Chi 0.036 0.037 0.041 0.057 Chi 1.501 1.821 1.85 1.62
Kolmo-S 0.162 0.166 0.185 0.25 Kolmo-S 0.156 0.156 0.156 0.156

Ju
ne

RMSE 0.161 0.19 0.191 0.193

D
ec

em
be

r RMSE 0.079 0.078 0.078 0.078
MABE 0.092 0.121 0.121 0.122 MABE 0.073 0.072 0.072 0.072

Chi 0.217 0.573 0.578 0.596 Chi 0.143 0.168 0.171 0.155
Kolmo-S 0.497 0.508 0.51 0.521 Kolmo-S 0.142 0.142 0.142 0.142

Table 2. Four statistical errors were calculated in the PDFs generated by the shape and scale parameters of four 
estimation methods.

Wind forecasting by RMSE Performance
Temperature & humidity 0.9204 0.8471
Temperature, humidity & wind direction 0.7224 0.5218
Precursor values of (Temperature & humidity) 0.9633 0.9280
Precursor values of Temperature, humidity) & wind direction 0.8388 0.7035

Table 3. Comparison of various ANN architectures.
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4.    CONCLUSIONS

A systematic investigation has been carried out to 
observe the impact of wind direction on wind speed 
modelling. The ANN was employed in modelling 
wind speed with two input parameters (temperature 
and humidity). In the second case, the precursor 
values of the input parameters were employed to 
forecast the current value of the wind speed. In 
the next step, input parameters were appended by 
an additional parameter, i.e., wind direction. In 
both cases, it was found that the results of ANN 
for training, testing, validation, and overall are 
significantly improved by the addition of wind 
direction with parameters temperature and humidity. 
Figures 7 and 11 depict the improved values of 
the correlation coefficient for all the categories. 
The best network in the forecasting of wind speed 
with three parameters (temperature, humidity, and 
wind direction) yields all correlation coefficients 
above 80%. This network has the lowest RMSE 
and improved performance. Wind speed is also 
modeled using the Weibull distribution. To find 
the scale and shape parameters, the least squares 
method is used with Python’s built-in function. A 
Python program was developed to implement the 
algorithm, the program also computes both the 
parameters using three existing methods (method 
of moments, empirical method, and maximum 
likelihood method) to compare the result of the 
least square method. The modelling was carried out 
for each month of the year 2016, and in most of the 
months, the RMSE and Kolmogorov-Smirnov test 
values were optimized for the least square method. 
The PDFs drawn by the estimated values of shape 
and scale parameters for the four methods elucidate 
that the least square method’s PDF explains well the 

histogram generated by the recorded values of wind 
speed. We conclude that the least square method 
using Python’s built-in function gives reliable 
results for wind speed modelling. The addition of 
wind direction in the input parameters to forecast 
improves the ANN results.
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