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Abstract: Wind energy is one of the green renewable energy sources that is available everywhere. The wind-generated
electrical energy is much less than the available wind potential. No windmill can even harness 50% of the available
wind energy. A lot of research investigations are still needed to explore and harness the maximum energy from wind
potential. This work is one of such series of research, in which we modeled wind speed using the Weibull distribution
through a Python program that uses the least square method based on Python built-in functions and evaluated the
shape and scale parameters of the distribution. The program also compares parameters calculated by other existing
methods. The Python program based on the least square method fits the Weibull distribution well compared to the
existing methods. The maximum value of scale parameters was found in June (more than 6.2), the corresponding
value is also close in May, where it is more than 6.1; the other two months that follow June and May (July and
September) have scale parameters near 5.7. It shows that the wind potential is maximum in June, and reasonable wind
energy is available in May, July, and September. The effect of wind direction on the modelling of wind speed is also
investigated. Perhaps it is the first study that involves wind direction in wind speed modelling. Two different Artificial
Neural Network Architectures were studied with and without wind directions in the input. It was found that the results
improve if wind direction is also taken in the list of input parameters. The Root Mean Square Error is the least (RMSE
= 0.7224) for the model which includes wind direction in the input layer, the performance indicator (0.5219) is also
the best for this architecture as compared to the other three.

Keywords: Weibull Distribution, Wind Energy Modelling, Python Programming, Least Squares Method, Machine
Learning, Artificial Neural Networks (ANN), Wind Direction.

1. INTRODUCTION parameters (shape & and scale ¢) and evaluate their

accuracy, often leveraging computational tools and

Wind speed prediction through meteorological
parameters is a critical area of research in renewable
energy, particularly for assessing wind energy
potential. The Weibull distribution has emerged as a
widely adopted statistical model for characterizing
wind speed data due to its flexibility in capturing the
stochastic nature of wind patterns. Numerous studies
have explored methods to estimate the Weibull

regional wind datasets. Elahi ef al. [1] developed a
Python library, windz, incorporating six methods,
viz., Method of Moments (MoM), Empirical
Method (EM), Energy Pattern Factor Method
(EPFM), Maximum Likelihood Method (MLM),
Modified Maximum Likelihood Method (MMLM),
and Maximum Entropy Principle (MEP), to
analyze wind speed data from three Pakistani cities
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(Harnai, Jacobabad, Talagang) [1]. Their findings
highlighted the Modified Maximum Likelihood
Method (MMLM) as the most efficient, while the
graphical method was deemed the least effective.
Similarly, Zahid et al. [2] introduced a computer
package for wind speed modelling, emphasizing
the utility of MMLM and MLM through statistical
error tests (Mean square, Chi-square, R-square).
Regional Studies in Pakistan provided information
on the viability of site-specific wind energy. Khan
et al. [3] compared the coastal wind profiles of
Gwadar and Pasni, revealing greater stability in the
Gwadar (parameter of form k = 4 - 6), but greater
wind energy density in Pasni. Khan et al. [3] also
compared four methods (MoM, EM, EPFM, MLM)
using Jiwani’s wind data (1998 - 2007) and found
that while all methods yielded nearly identical scale
parameters (c¢), MLM provided the best agreement
with measured mean wind speeds [4, 5]. However,
in a separate study analyzing Ormara’s data,
Khan et al. [4] concluded that MoM, EMP, and
MLM outperformed MMLM in estimating shape
parameters (k), with differences within 0.3. These
discrepancies underscore the context-dependent
efficacy of parameter estimation methods.

Recent studies have proposed novel
approaches to improve accuracy. Uddin and Sadiq
[6] introduced the Method of Quartiles (MOQ),
which calculates k& and ¢ using the first and third
quartiles. This method has demonstrated lower
values of the Akaike Information Criterion (AIC)
and reduced overestimation of wind density
compared to traditional methods, positioning MOQ
as superior to cities such as Karachi, Hyderabad,
and Quetta. Rajput et al. [7], through advanced
computational efficiency, suggested a simplified
gamma function formula for estimating scale
parameters, achieving an error <0.2% and validating
MLM as the most accurate method for Hyderabad
wind potential. They classified Hyderabad as
the most promising wind power site in Pakistan,
followed by Karachi, due to consistent wind speeds
that exceed the turbine cutting thresholds. On the
other hand, cities like Peshawar and Lahore showed
insignificant potential except for specific months.
The integration of programming tools significantly
enhanced validation processes.

Rehman et al. [8] developed a Python-based
Newton-Gauss technique, showing minimum
RMSE and AIC values for four cities, thus offering

a robust alternative to established methods.
These innovations highlight the growing role
of computational tools in improving parameter
estimation accuracy. They approved the Python
programs to automate the estimation of parameters,
emphasizing the importance of software in modern
wind energy research.

Uddin et al. [9] employed a least squares
method (LSM) to evaluate Lagrange multipliers
for MEP, reaching better adjustments than classic
MEP through Python-based error metrics (RMSE,
Chi-Square). While the Weibull distribution is
widely used, Sadiq [10] demonstrated that extreme
(generalized) value distributions have better
modeled continuous and seasonal winds of Karachi
with 95% confidence. This discovery emphasizes
the need to select a specific context model,
particularly in coastal urban environments.

The forecast of wind speed evolved
significantly with the integration of machine
learning techniques (ML) and deep learning
(DL), particularly when combined with weather
parameters. Although probabilistic models such
as the Weibull distribution remain fundamental,
recent studies emphasize the role of data-oriented
approaches to improve accuracy and address the
stochastic nature of wind patterns in Machine
Learning and Hybrid Models for Wind Speed
Prediction. Artificial Neural Networks (ANNs) and
Genetic Expression Programming (GEP) emerged
as robust tools for short-term wind speed forecast.
Ghorbani et al. [11] compared ANN, GEP, multiple
linear regression (MLR), and the persistence method
using autocorrelation functions to determine input
delays for wind speed data per hour from Kersey,
Colorado. Their findings revealed that ANN and
GEP performed comparably, with MLR surpassing
MLR and persistence. Similarly, Demolli ez al. [12]
demonstrated the transferability of ML models (for
example, random forest, increased gradient) for
long-term wind energy forecasting in geographical
places, highlighting their usefulness in the pre-
assessment of the feasibility of wind farms in
undeveloped areas.

Hybrid models increase predictive accuracy.
Zhu et al. [13] suggest an amalgamation of
convolutional neural networks and a Multilayer
Perceptron for the wind farm data. Hur [14]
proposed a two-stage method using an Extended
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Kalman filter to estimate, and then a neural network
for short-term forecasting of the wind speed. These
hybrid approaches illustrate practical applications
in wind power systems. Li and Jin [15] have also
developed a hybrid model that combines resource
selection, machine learning, and multi-objective
optimization. Its application to the wind speed data
from Penglai, China, generated unique objective
models. Advanced uncertainty modelling related
to convective wind was addressed by Ehsan et al.
[16] by comparing Quantile Regression Forests
and Bayesian Additive Regression Trees for the
tempest. The QRF stood out in points and PIS
estimates, reducing systematic errors and supporting
emergency preparation during the extreme climate.

Regional studies emphasize the adaptability of
ML models to local weather conditions. Tiirkan et
al. [17] predicted the wind speed to 30 m high using
10 m data in Tiirkiye, identifying Support Vector
Machines (SVM) as the most accurate method.
In Malaysia, Hanoon et al. [18] evaluated the
regression of the Gaussian process (GPR), increased
the trees (BT), and SVR in 14 stations, with GPR
reaching higher accuracy, despite the challenges in
the correlation force. These studies emphasize the
importance of adapting models to regional wind
regimes and integrating pre-processing techniques
to improve performance.

While existing studies validate ML/DL
models for wind speed forecasting, challenges
persist in dealing with non-stationary data and
incorporating various weather variables (e.g.,
temperature, humidity). Hanoon et al. [18]
emphasized the need to integrate optimization
algorithms to improve the correlation between the
expected and observed values. These gaps present
opportunities for new structures, such as the ANN-
Weibull hybrid proposed in this study, which takes
advantage of the meteorological parameters for
probabilistic forecasting. Han et al. [19] proposed a
hybrid model that integrated research and weather
forecast simulations (WRF), decomposition of the
empirical mode of the complete set (Ceemdan), and
a bidirectional CNN LSTM network optimized by
attention mechanisms.

Cadenas and Rivera [20] employed
Autoregressive  Integrated Moving  Average
(ARIMA) models to predict wind speed in Oaxaca,
Mexico, incorporating wind direction along with

temperature and moisture, and reported greater
accuracy in the capture of seasonal wind variability.
Similarly, Foley et al. [21] used Support Vector
Machines (SVM) to predict the production of wind
energy in Ireland, emphasizing the direction of the
wind as a critical factor to resolve the dynamics
of the coastal wind. Their work has shown that
directional data reduced RMSE by 18% compared
to the models excluding this variable.

Lydiaetal. [22]developed awind speed forecast
system using SVM and K-Nearest Neighbors (K-
NN) with inputs, including wind direction, but its
structure lacked the nonlinear modelling capacity
of the RNAs to deal with complex interactions
between variables. Liu et al. [23] proposed a hybrid
forecast model that combines transformations of
Wavelets and Gradient reinforcement machines,
but their approach did not explore ANS’ potential
to autonomously learn hierarchical characteristics
from directional and temporal data. The absence
of an ANN-based framework in these studies
represents a difference in the literature, as ANS
specifically suits non-linear relationships and
sequential dependence, adapted to the sequential
dependence contained in meteorological datasets.
The task addresses this difference by developing an
ANN-based model that integrates the air direction
with temperature, humidity, and the precursor
air speed values, using Python libraries such as
TensorFlow and causes for implementation. Our
approach not only creates fundamental insights of
pre-studies but also introduces a novel application
of ANNs to increase prediction accuracy in air
speed modelling.

2. MATERIALS AND METHODS

Weibull Distribution is one of the most widely used
distributions for modelling wind speed distributions.
Shape (k) and a scale parameter (C) characterized
this distribution through its cumulative distribution
function (CDF) as:

nK
F(v;k,c)=1-— e_(E) (1)

Where F(v;k,c) is a function that provides the
cumulative probability of observing a particular
wind speed, and v is the wind speed. The shape
parameter determines the shape of the distribution
(e.g., spread or skewness) through any of the k
< 1 (high frequency of low wind speeds), k =1
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(represents exponential distribution; wind speeds
are randomly and uniformly distributed over time),
or k > 1 (high frequency of high wind speeds). The
scale parameter (¢) represents the characteristic
wind speed, indicating the range or magnitude of
wind speeds. Higher values of ¢ signify stronger
average wind speeds in the region being analyzed.
The Probability Density Function (PDF) can be
presented as [24]:

wwike) = (£) (E)k_lexp(_(g)k) @)

Where W (v;k,c) represents the likelihood of
wind speed occurring at a specific value, showing
how wind speeds are distributed over the random
variable v (e.g., time, measurement). To estimate
scale and shape parameters, different methods have
been developed. The following methods are utilized
in our study.

2.1. Method of Moments (MoM):

This method utilizes the mean and variance of the
data to estimate the Weibull parameters [25]. The
shape parameter k can be estimated by solving the
following equation:

B3| =

gzc[r(ué)—r?(ua] 3)

Where o standard deviation of the wind speed data
and I' is the Gamma function. Once k is obtained,
the scale parameter C is also calculated by using the
following equation:

13:{:1“(1+%) 4)

2.2. Empirical Method (EM)

This method relies on empirical relationships
derived from the mean and standard deviation of
the wind speed data [26]. To estimate the shape
parameter (k), the following empirical formula is
used.

k=(2) (%)

Where, 6/ 7 = C, which is known as the coefficient

of variation. Once k has been estimated, the scale
parameter (¢), also calculated through the relation:

c=——x ©)
r(i+g)

We used Python to calculate I'.

2.3. Maximum Likelihood Method (MLM)

The MLM estimates the parameters k and ¢ by
maximizing the likelihood function [27]. The
optimization conditions can be used to find the
values of k and c.

[E?lf[ viln(v) XL L filnw)] ™ -

Zi=1 i

111

i)

Where f; represents the frequency or number
of observations (e.g., recorded wind speed
occurrences) in the i bin or interval.

2.4. Least Squares Method (LSM)

The least squares method is used by minimizing the
square difference between recorded and fitted values
[28]. It is an iterative method; the iteration stops
once the termination criteria are reached. Python
built-in library for least square fit was used to model
the Weibull distribution. The program finds the new
values of the probability distribution p (predicted)
and compares them with the corresponding known
values p (recorded). The sum of squares errors is
calculated by the following formula.

SSE = X {p(recorded) — p(predicted)}* (9)

The program determines the scale and shape
parameters by minimizing SSE.

2.5. Neural Network Architecture

The Artificial Neural Network method is a machine
learning technique that discovers the hidden
relationship between an output variable and a set of
input variables. It works on a pattern like the way our
brain. It makes use of neurons that link output and
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input variables through one or more hidden values
in a hidden layer between the output and input
variables [29]. In ANN methods, the data is divided
into three parts; the main part consists of more than
50% of the data is used to train the network. Once
the network is trained, the second part of the data is
used for testing the trained network. Finally, the last
part of the data is used to validate the network. An
overall check is also carried out on the complete set
of data. The goodness of the network is measured
by a couple of statistics: the correlation coefficient,
the Root Mean Square Error, and the Performance
of the network. If the correlation coefficient in
training, testing, validation, and overall check is
significant, the network is considered reliable;
further reliability check is done with the lowest
value of RMSE, and performance coefficient.

In general, there are three layers, known as input,
hidden, and output layers. The data is fed into
input layers having one or more input parameters,
and the values in the hidden layer are generated
using random weights and input values fed to an
activation function. The hidden layer then generates
output values using an activation function. A
comparison is made between generated output and
recorded output; if the difference is insignificant,
the network is considered as trained; otherwise, a
backward feedback error analysis generates new
weights in the input layer for new values generated
for the hidden layer. The process continues till the
network is well-trained. The neurons in the hidden
layer may be varied for optimized results.

In the present study, the input variables were
Temperature and Humidity, whereas the output
variable was wind speed. A hidden layer with 10
neurons was used to train the network. To notice the
influence of the wind direction on the wind speed.
The wind direction is also incorporated in the input
parameters. A precursor network is also trained in
this study with the same parameters. One of the
four ANN networks is shown in Figure 1.

2.6. Wind Energy Potential

Wind energy potential mainly depends on the wind
speed of the potential site; the other factors on
which it depends are the area swept by the wings of
the wind turbine and the air density of the location.
The air density varies from site to site and depends
on the altitude and air temperature. If A is the area

swept by the rotors in (m?), p is the air density in (kg
m~), and v is the wind speed in (m s'), the power in
watts is given by the following formula [30]:

1 o 1 _
P=-A pf v3f(v)dv = EA pv3 (10)
0

2

Here v? is the average value of the cube of the wind
speed. To make this power independent of the area
of the rotors, we find fractional power or power
density (average power per unit area in (watts m?)
and is given by:

P 1

——=_pp3 (11)
Wind potential for Karachi City for each month
from January to December was calculated using the
above formula.

2.7. Statistical Errors for Validation of Designed
Models

The validity of designed models has been checked
by the Mean Absolute Error (MAE), Root Mean
Square Error (RMSE), Chi-Square Test (¥?), and
Kolmogorov-Smirnov (KS) Test are calculated by
using Equations (12) to (15) [31].

(12)

1
n

Fig. 1. The ANN architecture with (a)Temperature
and Relative Humidity, (b) Temperature and Relative
Humidity, and Wind direction in the input layer.
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RMSE = [(%)Z(vi - ﬁi)Z] (13)
f
R (300 "
and
KS = maX‘Fi(v] - Fl(v)‘ (15)

3. RESULTS AND DISCUSSION

The demand for renewable energy has been
increasing day by day. Different available
Renewable potentials around the world have been
exploited and harnessed to generate electricity.
Wind is one of the renewable energies that has
potential in almost every part of the world. Weibull
distribution with two parameters is frequently used
in modelling wind speed distributions. To estimate
the parameters of the Weibull distribution, various
techniques and methods have been developed. In
this study, we used the method of least squares to
calculate the parameters using a built-in Python
function. A Python program was developed to carry
out the calculations and to estimate the parameters.
The built-in function works well if initial conditions
are close to the real values of the distribution
parameters, and the convergence becomes faster.
To do so, we used the fact that most of the scale
parameters are greater than 2, and the value of the
shape parameter can be written as a function of
the scale parameter. This formula was given as the
input parameter.

The program also computes the parameters
using the Method of Moments (MoM),
Empirical Method (EM), and the Maximum
Likelihood Method (MLM) to compare the results.
Table 1 gives the estimated values of the scale and
shape parameters computed by these methods. Both
the values of scale and shape parameters are higher
for estimation by the least square method, except
in one or two months. Hussain et al. [32] also
studied the wind speed distribution of the coastal
region of Karachi. They also used the maximum
likelihood method for estimation of shape and
scale parameters. The average value of the shape
parameter for 10 m height wind data was 3.3; the

corresponding average value in our study is 3.5. The
PDF generated by the estimated values of the shape
and scale parameters of the Weibull distribution is
shown in Figures 2 and 3. The PDFs generated by
the least square method are good representatives
of wind speed distribution; these PDFs cover
excellently the histograms generated by recorded
wind speed data in almost all recorded data. In
July, PDFs generated by all the methods coincide
perfectly. Visually, it looks like the least method
gives the best results. Now we have compared
quantitatively the four different statistical errors
that were computed to compare the performance of
the methods used in this work for the calculations
of the Weibull parameters and the generation of the
PDF. Table 2 shows the values of errors (RMSE,
MAE, Chi-Square, and Kolmogorov-Smirnov)
from January to December. The least-square results
give lower values of these statistical errors except
for March, August, and October; however, the errors
are not very far from each other. The Kolmogorov-
Smirnov errors for the least square methods are
lower except for March, August, and October.

January February

—— Fitted —— Fitted
030
03 — MoM —— MoM
EM EM
MM 05 MLM
025 s Recorded! = Recorded
‘,’ 020

Probability

6 8
Wind Speed (m/s)

3 4 56
Wind Speed (m/s)

March April

——— Fitted
om —— Mo
EM
MLM

= Recorded 025 — Recorded

0 2 4 6 8 1 0 2 4 6 8 1 12

Wind Speed (m/s) Wind Speed (m/s)

Fig. 2. Comparison of PDFs generated (Jan-June) with
the determined values of shape and scale parameters
using four estimation methods and the recorded wind
speed distribution histogram.
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Table 1. The shape and scale parameters of the Weibull distribution were calculated from four methods for January to
December for Karachi city.

k ¢ k [ k ¢
January May September
Least square 2.4245 2.9378 4.5632 6.0117 5.3670 5.7775
MoM 2.3514 2.9291 4.5586 6.1212 5.4234 5.8488
EM 2.3661 2.9288 4.5253 6.1238 5.3751 5.8518
MLM 2.3110 2.9688 4.4140 6.1210 5.2400 5.8533
February June October
Least square 2.2954 3.2365 3.8950 6.5716 3.0384 4.2200
MoM 2.1081 3.3881 3.3063 6.2710 2.9189 4.0384
EM 2.1273 3.3882 3.3037 6.2712 2.9257 4.0380
MLM 2.1030 3.4152 3.2930 6.2634 2.9170 4.0502
March July November
Least square 2.8366 4.7310 4.9434 5.8680 2.3856 2.9270
MoM 2.8108 4.5184 4.9640 5.8698 2.4324 2.8296
EM 2.8195 4.5178 4.9229 5.8726 2.4437 2.8293
MLM 2.8040 4.5309 4.9460 5.8717 2.3910 2.8750
April August December
Least square 4.4608 5.1896 5.1021 5.2883 2.2782 2.8058
MoM 4.1712 5.2582 4.5405 5.2244 2.3243 2.7144
EM 4.1413 5.2604 4.5035 5.2269 2.3394 2.7141
MLM 3.8750 5.2578 4.5160 5.2252 2.3000 2.7599

Probability

4 6
Wind Speed (m/s)

September

7 8 0

2 3 4 s
Wind speed (m/s)

34
Wind Speed (m/s)

Fig. 3. Comparison of PDFs generated (July-Dec) with
the determined values of shape and scale parameters
using four estimation methods and the recorded wind
speed distribution histogram.

Figure 4 shows the monthly wind potential for
Karachi City. The wind potential was calculated
using equation 11, for Karachi from January to
December. The wind potential is maximum for
June. From April to September, the wind speed is
relatively high, so the wind potential is reasonably
good for these months. In the months from October
to March, wind speed is relatively low, so the wind
potential compared to other months is low.

Wind modelling was done by many
researchers in different studies by considering
different meteorological parameters as input, but
the wind direction was not considered in wind
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Fig. 4. Monthly wind potential in KW for Karachi city.
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speed modelling. However, some researchers have
used wind direction for wind energy analysis. Carta
et al. [31] developed a joint probability distribution
based on wind speed and wind direction for wind
energy analysis [33]. Wang and Liu [34] used a finite
mixture statistical distribution to assess wind energy
potential using wind speed and wind direction data.
They used a von Mises mixture distribution with
various parameters for wind direction. Narain et
al. [35] used the wake effect of wind turbines to
investigate the effect of wind direction on wind
energy potential. Mata et al. [36] studied the effect
of wind direction on wind power output; they used
three models for wind potential exploitation based
on wind speed and wind direction shear. Models
were based on blade elements and actuator disc
representations.

We used an Artificial Neural Network to
comprehend the effect of wind direction. We
proposed two methods, one with temperature
and humidity as input, and the second one as a
precursor method. In each of the two methods, we
further assessed each method with and without

Training: R=0.78912

2}

w

w

N

Output ~= 0.63*Target +1.4
B

Test: R=0.7855

O Data
— Fit
Y=T

Output ~=0.6"Target + 1.4

N W BB OO N

Target

wind direction. All together four different ANN
architectures were investigated in this work.

First, we consider the ANN architecture in
which we modeled the wind speed distribution
using temperature and moisture as input parameters.
The results of the modelling are shown in the
Figures. 5 and 6. Figure 5 depicts the regression
analysis of the training, testing, validation, and
overall performance of the model. Our results are
not very promising as each R is less than 80%.
Figure 6 portrays the comparison of the input wind
speed distribution and the output generated by
the ANN model. The conclusion made in Figure
5 is also verified by Figure 6; the overlap is not
favorable. Ghorbani et al. [37] also used ANN to
model wind speed distribution for Tabriz, Iran. The
input parameters in ANN were Air temperature,
air pressure, relative humidity, and precipitation.
They used three different models having n, 2n, and
2n+1 neurons in the hidden layer. The coefficient
of correlation for each of these models was above
95%. The wind pattern in Karachi does not show
such promising results.

Validation: R=0.81584

C Data
— T it
Y=T

[}

0.68*Target + 0.94
F -9 [5)]

w

OQutput ~
[\ ]

0.63*Target +1.3

Output ~

Fig. 5. Regression analysis of Testing, training, validation, and overall wind speed output, the input parameters are

daily average temperature and relative humidity.
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Fig. 6. Comparison of recorded and ANN modelled wind
distributions by using daily temperature and relative
humidity.

To investigate the impact of the wind direction
in the ANN modelling, we added wind direction to
the input parameters of the previous model. Figure
7 furnishes the R (correlation) values between the
training (0.894), the test (0.839), and the validation

Training: R=0.89444

C Data

Output ~= 0.79"Target + 0.77

N W R O O N

=2}

o

w

N

Output ~= 0.83*Target + 0.78
B

Target

phases (0.854). Figure 7 depicts a stronger
correlation between the predicted and observed
wind speeds compared to the previous model
(R = 0.785-0.816). Figure 8 illustrates similar
results as shown in Figure 4, i.e., the comparison
of recorded and modeled values of wind speed.
The overlapping of recorded and modeled values
is relatively better in Figure 8 compared to that in
Figure 6 and demonstrates optimized modelling
results due to wind direction incorporation in the
list of input parameters.

In the second ANN architecture, we employed
precursor values of temperature and Humidity to
predict wind speed. The model’s performance shows
a moderate correlation during training, testing, and
validation phases, with an overall correlation of R
= 0.798. However, the test and validation metrics
reveal relatively weaker performance, with R =
0.702 for testing and R = 0.670 for validation, as
illustrated in Figure 9, indicating that this network
underperforms compared to earlier models. Figure
10 further authenticates the results shown in Figure
9. Figure 10 shows the comparison of the input

Validation: R=0.85413

© Data

6 |—Fit O
s

Output ~= 0.74*Target + 0.79

Target

All: R=0.87619

0.78"Target + 0.8

N W R OO N

Output ~

Target

Fig. 7. Regression analysis of testing, training, validation, and overall wind speed output; the input parameters are
daily average temperature, relative humidity, and wind direction.
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Fig. 8. Comparison of recorded and ANN modelled

wind distributions by using daily temperature, relative
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wind speed distribution and the output generated
by the ANN model. Again, the results are not very
promising as each R is less than 80%. The conclusion
made in Figure 9 is also verified by Figure 10. Jamil
and Zeeshan [38] studied wind speed modelling for

Training: R=0.79797

2]

0.64*Target +1.4
- w

w

]

Output ~

Test: R=0.70166

O Data
— it

Y=T

Output ~= 0.6*Target + 1.6
[+ (4] a o, =] ~J
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wind speed data of Gujarat, India, using ANN. They
also used precursor values of wind speed to predict
current wind speed. The coefficient of correlation
between predicted and recorded values of wind
speed was found to be above 98%. Again, the wind
speed pattern of Karachi does not show such high
values for the correlation coefficient.

In the second case, the influence of wind
direction in precursor modelling is depicted in
Figures 11 and 10. We incorporated wind direction in
the input list of the previous model. Figure 11 shows
the R values for the training (R = 0.837), testing (R
=0.807), and validation (R = 0.803). This attests to
a significant improvement in the correlation by the
inception of wind direction in the input parameters.
Figure 12 illustrates the comparison of recorded
and modeled values of wind speed. By comparing
Figures 10 and 12, it is obvious that the overlapping
of recorded and modeled values is exceptionally
better than in Figure 10. It further elucidates the
improvement in the results due to the inclusion of
wind direction in the list of input parameters.

Validation: R=0.66971
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Fig. 9. Regression analysis of Testing, training, validation, and overall wind speed output, the input parameters are
precursor values of daily average temperature and relative humidity.
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The two cases scrutinized above for wind
modelling with and without wind direction ascertain
that wind direction is an important input parameter
for wind speed forecasting. The addition of wind
direction mitigates the Root Mean Square error and
augments the performance of the modelling (see

Recorded

o (] ~

Wi.I‘Ld Speed (m/s)

0 50 100 150 200 250 300 350 400
Days

Fig. 10. Comparison of recorded and ANN modelled

wind distributions by using precursor values of daily

temperature and relative humidity.
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Table 2). Li and Shi [39] compared three different
ANN models that are used to predict the wind
speed of two sites in North Dakota. They used Back
Propagation NN, Adaptive Linear Element NN, and
Radial Basis Function NN. The RMSE values in the
prediction of wind speed using three ANN models
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Fig. 12. Comparison of recorded and ANN modelled

wind distributions, precursor values of daily temperature,

relative humidity, and wind direction.
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Fig. 11. Regression analysis of Testing, training, validation, and overall wind speed output. The input parameters are
precursor values of daily average temperature, relative humidity, and wind direction.
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Table 2. Four statistical errors were calculated in the PDFs generated by the shape and scale parameters of four

estimation methods.

Least square MoM EM  MLM Least square MoM EM MLM

RMSE 0.084 0.083  0.083  0.085 RMSE 0.07 0.07 0.071  0.07

? MABE 0.076 0.077 0.077 0.078 >  MABE 0.047 0.046 0.047 0.047
g Chi 0.082 0.076  0.078  0.072 = Chi 0.088 0.091 0.085 0.088
Kolmo-S 0.142 0.142 0.142  0.142 Kolmo-S 0.176 0172 0.18  0.176
RMSE 0.073 0.095 0.093  0.096 RMSE 0.072 0.049 0.052 0.051

g MABE 0.05 0.054 0.053 0.054 ?0 MABE 0.058 0.041 0.042  0.041
é Chi 0.05 0.047 0.046 0047 Z Chi 1.251 0.511 0479 049
Kolmo-S 0.15 027 0261 0277 Kolmo-S 0.13 0.091 0.106  0.101
RMSE 0.141 0.132  0.132  0.132 _ RMSE 0.057 0.06 0.058 0.051

§ MABE 0.084 0.078 0.078  0.078 'q'é MABE 0.043 0.045 0.044 0.038
§ Chi 0.133 0.127 0.128  0.127 ‘% Chi 0.289 0306 0.28  0.219
Kolmo-S 0.405 0379 0379  0.38 . Kolmo-S 0.128 0.14 0.132 0.102
RMSE 0.058 0.068 0.069  0.073 RMSE 0.108 0.102 0.102  0.103

TE. MABE 0.039 0.04 0.04 0.041 f‘é’ MABE 0.072 0.065 0.065 0.065
< Chi 0.075 0.049 0.047 0.036 8 Chi 0.151 0.145 0.146  0.143
Kolmo-S 0.129 0.207 0.212  0.225 Kolmo-S 0.282 0.278 0277 0.279
RMSE 0.076 0.078 0.082 0.096 _  RMSE 0.085 0.084 0.085 0.084

z MABE 0.05 0.051 0.054  0.06 é MABE 0.078 0.076  0.076  0.077
= Chi 0.036 0.037 0.041  0.057 % Chi 1.501 1.821 1.85 1.62
Kolmo-S 0.162 0.166 0.185  0.25 “ Kolmo-S 0.156 0.156 0.156  0.156
RMSE 0.161 0.19 0.191 0.193 _ RMSE 0.079 0.078 0.078  0.078

@ MABE 0.092 0.121 0.121  0.122 'q‘é MABE 0.073 0.072  0.072  0.072
= Chi 0.217 0.573  0.578  0.596 § Chi 0.143 0.168 0.171  0.155
Kolmo-S 0.497 0.508  0.51 0.521 = Kolmo-S 0.142 0.142  0.142  0.142

were more than 1.25 in each case. However, the
four different ANN architectures in this study show
RMSE values between 0.72 and 0.96.

Table 3 quantifies the RMSE and performance
values between different input configurations for
wind speed prediction, reinforcing the critical role
of wind direction in enhancing model accuracy.
Notably, incorporating wind direction consistently
reduces Mean Squared Error (MSE), a key indicator

Table 3. Comparison of various ANN architectures.

of prediction error, across both precursor-inclusive
and precursor-exclusive models. For instance,
without precursors, adding wind direction (T, H &
D) lowers MSE by 21.5% (from 0.9204 to 0.7224).
With precursors, including wind direction (T, H, D
& Precursor), reduces MSE by 12.9% compared to
the precursor-only model (from 0.9633 to 0.8388).
Table 4 shows the statistical testing and respective
significance level.

Wind forecasting by RMSE Performance
Temperature & humidity 0.9204 0.8471
Temperature, humidity & wind direction 0.7224 0.5218
Precursor values of (Temperature & humidity) 0.9633 0.9280
Precursor values of Temperature, humidity) & wind direction 0.8388 0.7035
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Table 4. Statistical testing and significance.
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Dataset 1 Statistics

Dataset 2 Statistics

Count 360

Mean 3.7208
Standard Deviation 1.2107
Variance 1.4659

T-Test results

Difference Between Mean -0.0057
T-Statistics -0.0561
Degree of Freedom 718
P-Value 0.1329
Interpretation

Count 360

Mean 3.7264
Standard Deviation 1.4881
Variance 2.2145

The difference between means is not statistically significant (p > 0.05)

4. CONCLUSIONS

A systematic investigation has been carried out to
observe the impact of wind direction on wind speed
modelling. The ANN was employed in modelling
wind speed with two input parameters (temperature
and humidity). In the second case, the precursor
values of the input parameters were employed to
forecast the current value of the wind speed. In
the next step, input parameters were appended by
an additional parameter, i.e., wind direction. In
both cases, it was found that the results of ANN
for training, testing, validation, and overall are
significantly improved by the addition of wind
direction with parameters temperature and humidity.
Figures 7 and 11 depict the improved values of
the correlation coefficient for all the categories.
The best network in the forecasting of wind speed
with three parameters (temperature, humidity, and
wind direction) yields all correlation coefficients
above 80%. This network has the lowest RMSE
and improved performance. Wind speed is also
modeled using the Weibull distribution. To find
the scale and shape parameters, the least squares
method is used with Python’s built-in function. A
Python program was developed to implement the
algorithm, the program also computes both the
parameters using three existing methods (method
of moments, empirical method, and maximum
likelihood method) to compare the result of the
least square method. The modelling was carried out
for each month of the year 2016, and in most of the
months, the RMSE and Kolmogorov-Smirnov test
values were optimized for the least square method.
The PDFs drawn by the estimated values of shape
and scale parameters for the four methods elucidate
that the least square method’s PDF explains well the

histogram generated by the recorded values of wind
speed. We conclude that the least square method
using Python’s built-in function gives reliable
results for wind speed modelling. The addition of
wind direction in the input parameters to forecast
improves the ANN results.
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