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Abstract: Dimensionality reduction, the elimination of irrelevant features, and the selection of an optimal subset of 
features are critical components in the construction of an efficacious machine learning model. Among the various 
feature selection methodologies, wrapper-based methods yield superior results due to their evaluation of candidate 
subsets. Numerous meta-heuristic methods have been employed in this feature selection process. A significant and 
complex issue in feature selection utilizing these methods is the selection of the most suitable classifier. In this study, we 
propose a novel method for selecting the optimal classifier during the feature selection process. We employ ten distinct 
classifiers for two swarm intelligence methods, namely Bat and Gray Wolf, and compute their results on four cancer 
datasets: Leukemia, SRBCT, Prostate, and Colon. Our findings demonstrate that the proposed method identifies the 
optimal classifiers for all four datasets. Consequently, when employing wrapper-based methods to select features for 
each dataset, the optimal classifier is identified. 
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1.	 INTRODUCTION

Feature selection is a pivotal process in machine 
learning that entails the selection of the most 
pertinent features from the dataset that contribute 
significantly to the prediction variable or outcome. 
The objective is to eliminate irrelevant or redundant 
features. This can lead to a decrease in model 
accuracy and performance. Feature selection is 
instrumental in constructing an effective machine 
learning model for several reasons:
•	 Enhances Accuracy: Irrelevant or redundant 

features can adversely affect the model’s 
performance. By utilizing only, the most pertinent 
features, we can construct more accurate models.

•	 Mitigates Overfitting: A model trained with 
irrelevant features is more prone to overfitting, 
where it performs well on the training data but 
poorly on unseen data.

•	 Accelerates Training: Less data equates to 
faster training times. By reducing the number of 

features, we can expedite the training process. 
•	 Boosts Interpretability: Models with fewer 

features are simpler to understand and interpret.

There are several techniques for feature selection 
[1], each with its unique strengths and weaknesses. 
Here are a few commonly employed methods:
	• Filter Methods: These methods are often 
univariate and consider each feature independently 
or in relation to the dependent variable. Examples 
include the Chi-Squared Test [2], Information 
Gain [3], and Correlation Coefficient Scores [4].

	• Wrapper Methods: These methods perceive the 
selection of a set of features as a search problem. 
Examples include Recursive Feature Elimination 
[5], Forward Selection, and Backward 
Elimination [6].

	• Embedded Methods: These methods ascertain 
which features best contribute to the accuracy of 
the model during the model creation process. An 
example includes LASSO [7].



Among the various methodologies for feature 
selection, wrapper-based methods yield superior 
results. This can be attributed to the employment of 
a fitness function, which is utilized to evaluate each 
selected subset. For a considerable duration, meta-
heuristic algorithms have been instrumental in 
resolving numerous optimization problems that are 
either exceedingly complex or possess an extensive 
problem space, rendering them unsolvable [8]. 
Novel meta-heuristic algorithms, encompassing 
population-based, evolutionary-based, and nature-
inspired based methods, are continually being 
developed. With minor modifications, these 
methods can be transformed into a robust wrapper-
based feature selection method [9]. These methods 
typically commence with a subset of features and, 
after evaluating them with a fitting function, they 
converge towards the optimal results based on the 
proposed algorithm. The fitting function serves as a 
crucial criterion that could be a supervised machine 
learning algorithm, calculating the suitability of 
candidate features. In machine learning, there 
exists a multitude of supervised algorithms, each 
with its unique advantages and disadvantages [10]. 
A particular classifier may yield satisfactory results 
with a dataset, while another classifier may produce 
unacceptable or even subpar results on the same 
dataset. This challenge is also applicable to the 
evaluation function of feature selection problems. 
Consequently, the selection of an appropriate 
classifier can enhance the evaluation performance. 
Given that it is not feasible to test individual 
classifiers on all datasets due to the time-consuming 
nature of this process, we propose a solution to this 
challenge, enabling the utilization of the optimal 
classifier for quality assessment.

Numerous studies have been conducted 
to predict various types of cancers, employing 
a range of machine learning algorithms in the 
process. Common algorithms such as K-Nearest 
Neighborhood, Support Vector Machine, Logistic 
Regression, Decision Tree, and Bayes have 
been widely utilized. More complex methods, 
including Random Forest, Ensemble, Boosting, 
Neural Network, and deep learning, have also 
been explored. However, these methods often 
encounter high time complexity due to the large 
data dimensions, particularly the number of genes. 
To address this issue, researchers have considered 
the use of different dimension reduction methods. 
Among the feature selection methods, filtering-

based methods have been favored over wrapper-
based and embedding-based methods. For instance, 
Purbolaksono et al. [11] employed mutual 
information to reduce dimensions and identify 
informative genes. Aydadenta and Adivijaya [12] 
utilized k-means and Information Gain for feature 
selection. Initially, k-means was used to group 
similar features into a cluster, thereby eliminating 
redundancy. Subsequently, the Relief algorithm 
was used to rank the elements of the clusters, 
and the top-ranking features of each cluster were 
combined for Random Forest training. Cilia et al. 
[13] concentrated on feature ranking techniques 
that evaluate each feature individually. In the work 
of Bol’on et al. [14], various feature selection 
techniques such as ReliefF, SVM-RFE, mRMR, 
IG, and FCBF were used for gene selection. Al-
Batah et al. [15] employed the filter method, 
CFS, to eliminate redundant genes and identify 
informative ones. Baliarsingh et al. [16] used the 
Wilcoxon rank sum test to select relevant genes. Su 
et al. [17] introduced a gene selection method based 
on the Kolmogorov-Smirnov (K-S) test and CFS. 
Initially, the K-S test removed redundant genes and 
noise by comparing the distribution of two types 
of samples. The filtered subset was then evaluated 
by CFS, leaving only genes with high correlation 
with the class and low redundancy. Lastly, Ahmad 
et al. [18] used different filter feature selection 
techniques, namely SNR, FC, IG, and t-Test, to 
select informative genes. This comprehensive 
review of methods and techniques provides a solid 
foundation for future research in cancer prediction 
and gene selection.

In addition to the aforementioned methods, 
some researchers have employed wrapper-based 
methods to identify the most effective genes. 
For instance, Wu et al. [19] proposed a hybrid 
approach that leverages an enhanced HI-BQPSO 
binary quantum particle swarm optimization 
algorithm for feature selection. This innovative 
method amalgamates the benefits of filtering 
and random heuristic search. The process begins 
with the utilization of the Maximum Information 
Coefficient (MIC) to compute the correlation 
between features and class, thereby obtaining an 
initial feature subset. Subsequently, the enhanced 
BQPSO is employed to derive the optimal feature 
subset. This methodological approach underscores 
the potential of hybrid models in gene selection for 
cancer prediction. 
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Several studies have also explored the 
combination of filtering and wrapper-based 
methods. For instance, Medjahed et al. [20] utilized 
Support Vector Machines based on Recursive 
Feature Elimination (SVM-RFE) to eliminate 40% 
of features. The remaining subset was subsequently 
processed through Binary Dragonfly (BDF) to 
retain only the informative genes. In another 
study, Jain et al. [21] proposed a hybrid feature 
selection method that amalgamated Correlation-
based Feature Selection (CFS) and Improved 
Binary Particle Swarm Optimization (IBPSO). The 
use of IBPSO enhanced the initial convergence 
to the local optimum of Binary Particle Swarm 
Optimization (BPSO). Furthermore, Shahbeig et 
al. [22] introduced a hybrid Teaching-Learning-
Based Optimization - Particle Swarm Optimization 
(TLBO-PSO) method. This approach combines 
the principles of Teaching-Learning-Based 
Optimization (TLBO) and a mutated version of 
Fuzzy Adaptive Particle Swarm Optimization 
(PSO) algorithms. These studies highlight the 
potential of hybrid models in gene selection for 
cancer prediction.

A thorough examination of feature selection 
techniques and cancer prediction methodologies is 
presented in the study conducted by Abd-Elnaby 
et al. [23]. This comprehensive review provides 
valuable insights into the current state of research 
in this field. An important observation to note is 
that all the introduced wrapper-based methods 
inherently require a classifier. This observation 
prompts an intriguing question: would modifying 
the classifiers used in these methods influence the 
efficiency of the problem, either in a beneficial 
or detrimental manner? This potential variability 
could introduce complexities and pose challenges 
in the application of these methods.

In this study, we introduce a novel feature 
selection model that, in addition to selecting the 
optimal features, enables the determination of the 
most suitable classifier for use with each dataset. 
Initially, we selected two swarm-intelligence-
based methods, Bat and Gray Wolf, from among 
meta-heuristic methods and adapted them into two 
distinct feature selection approaches. Subsequently, 
from the realm of machine learning algorithms, 
we selected ten classifiers - KNN [24], SVM 
[25], Bayes [26], Ridge [27], DT [28], RF [29], 
Bagging [30], LightGBM [31], Perceptron [32], 
and LDA [33] - to serve as the fitness function for 
both algorithms and executed the feature selection 
process with them. This process was repeated ten 
times to enhance confidence, owing to the nature 
of wrapper-based methods. The results were 
noted, and the optimal classifier was identified 
among them for comparison with our proposed 
model. In our proposed model, we incorporated a 
heuristic component into both algorithms to select 
the optimal classifier concurrently with the feature 
selection. This process was also executed ten times 
for assurance. Furthermore, to demonstrate the 
efficiency of the proposed method, the test was 
conducted on four datasets of gene expressions for 
Leukemia, Prostate, SRBCT, and Colon cancers. 
Utilizing the results obtained from the Bat and Gray 
Wolf, using individual classifiers, and comparing 
them with the proposed method, we demonstrate 
that the proposed method identifies the optimal 
classifier on the evaluated datasets. Therefore, 
for the feature selection process using swarm 
intelligence algorithms, the optimal classifier can 
be selected for each dataset.

Figure 1 presents our proposed model steps 
for selecting the optimal classifier for wrapper-
based feature selection methods. To evaluate 

Fig. 1. Our proposed model steps for selecting the optimal classifier for wrapper-based feature selection methods.
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the performance of the proposed model, four 
microarray datasets were employed. The Bat and 
Gray Wolf optimization algorithms were utilized 
as dimensionality reduction methods. These 
datasets were processed using these two meta-
heuristic techniques to select the optimal subset 
of features. The accuracy of the selected features 
was then evaluated using ten distinct machine 
learning methods, and the results were documented 
for comparison. Subsequently, a roulette wheel 
mechanism was integrated into both the Bat and 
Gray Wolf algorithms. During the feature selection 
process, the probability of selecting each of the ten 
machine learning methods was determined. In the 
following iteration, one of these ten methods was 
employed to compute the fitness function via the 
roulette wheel mechanism. The accuracy of the 
selected features was recalculated, leveraging this 
mechanism alongside the top-performing machine 
learning method (highest probability), and the 
outcomes were recorded. A 5-fold cross-validation 
procedure was conducted during the feature 
selection process by both the Bat and Gray Wolf 
algorithms, with and without the roulette wheel 
step, ensuring that all samples were included in the 
training and testing phases. Finally, a comparative 
analysis was performed on the results obtained from 
the Bat and Gray Wolf feature selection methods, 
both with and without the roulette wheel step, 
alongside the selected machine learning method.

The main purpose of our study is to identify 
the optimal classifier to be used as a fitness function 
within the wrapper-based feature selection process. 
Selecting the optimal machine learning method 
tailored to the specific dataset, such as cancer 
diagnosis, can enhance the accuracy of computations 
and identify the best subset of features. Our method 
concentrates on determining the optimal classifier 
from several candidate machine learning methods. 
This has been implemented on four cancer datasets 
using two meta-heuristic algorithms, incorporating 
the roulette wheel mechanism.

2.    MATERIALS AND METHODS

Feature selection constitutes a crucial phase in the 
machine learning pipeline. It serves to enhance 
the performance of a model, mitigate overfitting, 
augment interpretability, and expedite training. By 
comprehending and implementing suitable feature 
selection methods, we can construct more efficient 
and efficacious machine learning models. In this 
section, we present a novel pipeline capable of 
identifying the optimal classifier for utilization in 
wrapper-based feature selection methods.

2.1.  Datasets

In this study, we utilized four datasets, as detailed 
in Table 1, to evaluate the proposed model.  These 
datasets are a type of high-dimensional data 
structure known as microarrays, which carry 
genetic information from a given sample. The first 
dataset employed in this study carries information 
about Leukemia cancer, distinguishing between 
two classes: Acute Myeloid Leukemia (AML) and 
Acute Lymphoblastic Leukemia (ALL). This dataset 
comprises 7129 identified and quantified genes for 
72 patients. We partitioned the dataset into a training 
set and a test set [34]. The second dataset is the 
Small Round Blue Cell Tumors (SRBCT), a gene 
expression dataset from a childhood cancer study 
[35]. It contains 83 samples with 2308 genes across 
four classes, with the following distribution: 29 
cases of Ewing Sarcoma (EWS), 11 cases of Burkitt 
Lymphoma (BL), 18 cases of Neuroblastoma (NB), 
and 25 cases of Rhabdomyosarcoma (RMS). The 
third dataset pertains to Prostate cancer and consists 
of 12600 genes across two classes: 77 wild type and 
52 Prostate cancer samples [36]. The final dataset is 
the Colon dataset, composed of 2000 genes and 62 
samples taken from Colon cancer patients. Among 
the samples, there are 40 tumor biopsies (marked 
as abnormal) and 22 normal [37]. We employed the 
same strategy of splitting the dataset into a training 
set and a test set to validate the constructed model.

Dataset Number of samples Number of genes Number of classes
Leukemia 72 7129 2
SRBCT 83 2308 4
Prostate 136 12600 2
Colon 62 2000 2

Table 1. The dataset utilized for evaluating our proposed model is characterized by the number of samples, genes, and 
classes.
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2.2.  Feature Selection

In order to implement the wrapper-based feature 
selection method, we opted for two meta-heuristic 
algorithms, namely Bat and Gray Wolf, which 
will be succinctly elucidated. The Bat and Gray 
Wolf algorithms necessitate an estimator, such 
as classifiers, to compute the performance of 
the optimal subset of features. In this study, we 
selected ten classifiers and executed each of the Bat 
and Gray Wolf algorithms with them on the four 
datasets delineated in the preceding section. Owing 
to the stochastic nature of swarm intelligence 
methods, the evaluation process is reiterated ten 
times. Subsequently, the method of selecting the 
optimal classifier, which is expounded upon in 
the ensuing sections using these ten classifiers, is 
implemented. In addition to selecting the optimal 
subset of data, the optimal classifier is identified on 
the target dataset without incurring any additional 
time overhead. 

2.3. Bat Algorithm

Bats are intriguing creatures whose advanced 
echolocation capabilities have garnered the attention 
of researchers across various fields. Echolocation 
operates akin to sonar: primarily micro-bats emit 
a loud, brief pulse of sound, which, upon striking 
an object, returns as an echo after a fraction of 
time [38]. Consequently, bats can calculate their 
distance from an object [39]. Moreover, this 
remarkable orientation mechanism enables bats 
to discern the difference between an obstacle and 
prey, facilitating hunting even in complete darkness 
[40]. All bats utilize echolocation to gauge distance, 
and they also possess the ability to distinguish 
between food/prey and background barriers; A bat 
‘b’ flies randomly with velocity ‘v’ at position ‘x’ 
with a fixed frequency ‘fmin’, varying wavelength 
‘λ’, and loudness ‘A0’ to search for prey. They can 
automatically adjust the wavelength (or frequency) 
of their emitted pulses and modulate the rate of pulse 
emission ‘R ϵ [0, 1]’, contingent on the proximity 
of their target. Although the loudness can vary in 
numerous ways, Yang [41] posits that the loudness 
varies from a large (positive) ‘A0’ to a minimum 
constant value ‘Amin’. 

Algorithm1. Feature selection by Bat Algorithm.
1.	 Initialize the bat population Xb, random number in {0, 1}, b = 1, 2, 

..., nBats.
2.	 Initialize the loudness Ab, random number in range [1, 2], b = 1, 2, 

..., nBats.

3.	 Initialize the pulse emission rate Rb, random number in range [0, 1], 
b = 1, 2, ..., nBats.

4.	 Initialize the velocity Vb = 0, b = 1, 2, ..., nBats.
5.	 Initialize the fitness fitnessb = -∞, b = 1, 2, ..., nBats.
6.	 Initialize the globalFitness = -∞.
7.	 Initialize the maximum and minimum frequency, fmin = 0, fmax = 1.
8.	For (t in maxIter):
9.	     For (b in nBats):
10.       Find (Xb == 1) and make train and test subsets.
11.       Calculate accuracy.
12.       accuracy = (theta × accuracy + (1-theta) × (1- ))
13.       If (rand < Ab & accuracy > fitnessb):
14.             fitnessb = accuracy
15.             Ab = αAb
16.             Rb = Rb

0[1-exp(-yt)]
17.             [maxFitness, maxIndex] = max(fitness)
18.       If (maxFitness > globalFitness):
19.             globalFitness = maxFitness
20.             xHat = xmaxIndex
21.    For (b in nBats):
22.       If (rand > Rb):
23.             Xb = Xb +  ϵ Ā 
24.             Convert Xb to {0, 1} by Sigmoid function
25.       If (rand < Ab & fitnessb > globalFitness):
26.             Fb = fmin + (fmax - fmin) rand
27.             Vb = Vb + (xHat - Xb) Fb
28.                      Xb = Xb + Vb
29.             Convert Xb to {0, 1} by Sigmoid function
30. Return xHat.

Algorithm 1, shows the process of feature 
selection by Bat Algorithm. Initially, a population 
with random positions is established as candidate 
genes for each bat. Subsequently, the loudness, 
pulse emission rate, velocity, minimum and 
maximum frequency, and fitness are initialized. 
In each iteration, candidate genes are specified for 
each bat, and the accuracy of the selected subset is 
calculated. Based on the number of candidate genes, 
the fitness of each bat is then evaluated. Lines 13 to 
20 indicate the best position and global fitness if 
the fitness is improved. Lines 21 to 29 update the 
positions of the bats. Finally, Line 30 returns the 
best subset of selected genes (best position) as the 
final solution.

2.4. Gray Wolf Algorithm

The Gray Wolf algorithm is a representative swarm-
intelligence algorithm, inspired by the leadership 
hierarchy and hunting mechanism of gray wolves in 
nature. Gray wolves, recognized as apex predators, 
typically have an average group size of 5–12. Within 
the hierarchy of the Gray Wolf algorithm, the alpha 
(α) is considered the most dominant member of the 
group. The remaining subordinates, beta (β) and 
delta (δ), assist in controlling the majority of wolves 
in the hierarchy, which are considered as omega 
(ω). The ω wolves hold the lowest ranking within 
the hierarchy [42]. The mathematical model of the 
hunting mechanism of gray wolves comprises the 
following stages:
•	 Tracking, chasing, and approaching the prey.
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•	 Pursuing, encircling, and harassing the prey 
until it ceases movement.

•	 Attacking the prey.
During the hunt, gray wolves encircle the prey. The 
hunting of prey is typically guided by α, β, and δ, 
who participate occasionally. The best candidate 
solutions, namely α, β, and δ, possess superior 
knowledge about the potential location of the prey. 
The other search agents (ω) update their positions 
according to the positions of the three best search 
agents [43]. 

Algorithm 2, illustrates the process of feature 
selection by the Gray Wolf Algorithm. Initially, 
a population is generated with random positions 
representing candidate genes for each wolf. 
Subsequently, the values of the parameters a, A, 
and C are initialized. Candidate genes are identified 
for each wolf, and the accuracy of the selected 
subset is calculated. The fitness of each wolf is 
then evaluated based on the number of candidate 
genes. Line 6 specifies the first, second, and third 
best wolves. During each iteration of the algorithm 
(lines 7 to 13), the positions and parameters of 
a, A, and C are updated, and both accuracy and 
fitness are recalculated. The positions of the top 
three wolves are updated accordingly, reflecting 
any improvements in global fitness.  Finally, line 
14 returns the best subset of the selected genes (the 
position of the best wolf) as the solution.

Algorithm 2. Feature selection by Gray Wolf Algorithm.
1.	 Initialize the gray wolf population Xw, random number in {0, 1}, 
	 w = 1, 2, ..., nWolves.
2.	 Initialize a, A and C.
3.	Find (Xw == 1) and make train and test subsets.
4.	Calculate accuracy.
5.	fitness = (theta × accuracy + (1-theta) × (1- ))
6.	Xα, Xβ, Xδ = The first, second and third best wolves.
7.	For (t in maxIter):
8.	       For (w in nWolves):
9.	             Update the position of the current wolf.
10.            Update a, A, C.
11.            Calculate accuracy.
12.            fitness = (theta × accuracy + (1-theta) × (1- ))
13.            Update Xα, Xβ, Xδ.
14. Return Xα

2.5. Classifiers

In order to assess the subset of candidate features 
selected through the feature selection process, 
we employed two algorithms as described in the 
preceding section. Among the machine learning 
classification algorithms, we utilized ten classifiers: 
K-Nearest Neighbors (KNN), Support Vector 
Machine (SVM), Naive Bayes, Ridge Regression, 
Decision Tree (DT), Random Forest (RF), Bagging 

Classifier, Light Gradient Boosting Machine 
(LightGBM), Perceptron, and Linear Discriminant 
Analysis (LDA). Each of these classifiers was 
independently applied in the feature selection 
processes of both the Bat Algorithm and the 
Gray Wolf Optimization Algorithm. For the KNN 
classifier, the number of neighbors was set to 7. 
For ensemble methods such as RF and LightGBM, 
the number of weak learners was set to 100. The 
parameters for all other classifiers were kept at their 
default settings. It should be noted that the choice 
of classifiers is not limited to the ones used in this 
study, and any other classifier can be incorporated 
as needed.

2.6.  Selecting the Optimal Classifier

In order to identify the optimal classifier from 
the ten methods selected during the feature 
selection process, we introduced modifications and 
incorporated a heuristic component into the Bat and 
Gray Wolf algorithms. This approach ensures that 
while the best features are being selected, the most 
suitable classifier for each dataset is also identified. 
In both the Bat and Gray Wolf feature selection 
methods, we initially generate a random population. 
For both methods, ten agents are considered. Each 
agent possesses a position represented by a binary 
vector, with candidate features assigned a specific 
value within this vector. To evaluate the fitness of 
candidate features, we employ the ten classifiers 
mentioned earlier in the cost function. Initially, each 
agent is randomly assigned one of the classifiers, 
and the fitness of candidate features is evaluated. 
In addition to assessing the fitness of each agent, 
we also retain the classifier with which that agent 
was evaluated. Up to this point, no additional 
computational burden has been imposed on the 
algorithms, meaning the performance of the ten 
agents with the ten classifiers has been estimated. 
Meta-heuristic methods, particularly swarm 
intelligence algorithms, commence with an initial 
population, and the algorithm strives to converge 
towards the most favorable positions. In both of 
our feature selection methods (Bat and Gray Wolf), 
changes in agents’ positions are introduced in each 
round to guide them towards the optimal solutions. 
In addition to evaluating the fitness of each agent 
in the current position, the fitness in new positions 
must also be assessed with a classifier. If these 
positions are superior, they are updated; otherwise, 
the new position is disregarded.
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Prior to initiating the second iteration, we 
implement a Roulette Wheel using the calculated 
score for each classifier. The Roulette Wheel 
Selection algorithm, also known as Fitness 
Proportionate Selection, is a method employed 
in genetic algorithms [44] to select potentially 
beneficial solutions for recombination. Each 
potential solution (in this case, features selected by 
agents) in the population is assigned a fitness score 
based on its quality or suitability. Each classifier’s 
fitness score is then utilized to assign a proportion 
of the roulette wheel. The higher the fitness score, 
the larger the classifier’s portion of the wheel. The 
proportion of the Roulette Wheel assigned to each 
classifier is calculated as follows:

Where pi​ represents the proportion of the i-th 
classifier, fi​ denotes the fitness of the i-th agent 
as determined by the i-th classifier, fj​ signifies the 
fitness of the j-th classifier, and n is the total number 
of classifiers. 

In the second iteration, the implemented 
Roulette Wheel is utilized to assign each classifier. 
A random number is generated within the range of 
0 to 1. The classifier whose segment encompasses 
this number is selected. This process is iteratively 
performed until all agents are selected for the 
second generation. The fundamental concept is 
that classifiers with superior fitness have a higher 
probability of being selected, yet there remains a 
possibility for less fit classifiers to be chosen. This 
strategy maintains diversity within the population 
and prevents premature convergence. From this 
iteration forward, each time there is a requirement 
to calculate the fitness of an agent, the Roulette 
Wheel is updated. Consequently, classifiers that 
have yielded superior results will likely have more 
selection opportunities.

Algorithm 3 illustrates the process of 
identifying the optimal classifier in conjunction 
with selecting the best features. Initially, a 
classifier is assigned to each agent (bat or wolf). 
The fitness of each agent is then evaluated using 
the assigned classifier. Based on the obtained 
fitness, the probability of selecting each classifier 
is initialized. A roulette wheel is constructed using 
these probabilities. Between lines 5 and 10, the 
position of each agent is updated using Algorithms 
1 and 2. Subsequently, a classifier is selected for 

each agent using the roulette wheel, and the fitness 
is recalculated with the assigned classifier. The 
probabilities of the classifiers and the roulette wheel 
are then updated accordingly. Finally, in line 11, the 
best subset of genes (optimal positions) identified 
by the best classifier is returned as the final solution.

Algorithm 3. Rating the classifiers by Roulette Wheel probabilities.
1.	Assign a classifier to each agent randomly.
2.	Calculate the fitness of each agent by assigned classifier.
3.	Calculate the classifiers selecting probabilities by obtained fitness.
4.	Make a Roulette Wheel.
5.	For (t in maxIter):
6.	      Update the Bats and Wolves positions by algorithms 1 and 2.
7.	      Select a classifier by Roulette Wheel for each agent.
8.	      Calculate the fitness of each agent by assigned classifier.
9.	      Update the classifiers selecting probabilities by obtained fitness.
10.     Update the Roulette Wheel.
11. Return best classifier and best position.

The number of features selected by the Bat and Gray 
Wolf methods varies in each iteration. Therefore, 
to evaluate the candidate features in proportion to 
their numbers, we utilized the following equation:

The number of Bats and Wolves was set to 10, 
and the termination condition was established at 50. 
To ensure the participation of all samples in both 
the training and testing processes, we employed a 
5-fold cross-validation technique and computed the 
mean value.

3.    RESULTS AND DISCUSSION

In this section, we examine the proposed method. We 
employed two dimensionality reduction methods, 
namely the Bat and Gray Wolf algorithms, to select 
the optimal genes from four cancer datasets. Ten 
classifiers were used to evaluate candidate data 
subsets by both the Bat and Gray Wolf methods. 
For the Bat method, we considered 10 bats and 
50 repetitions, and for the Gray Wolf method, 
we considered 10 wolves and 50 repetitions. To 
ensure all data were included in both the training 
and testing processes, we utilized a 5-fold cross-
validation method. For increased certainty, the 
feature selection process was repeated 10 times 
with both methods. The results are presented in 
Tables 2 to 9 (given in supplementary data).

As can be observed in Table 2, the best values 
obtained from 10 executions on the leukemia cancer 
dataset show that the KNN classifier achieved an 
accuracy of 84.76% with 3767 features out of 7129. 
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The SVM method achieved an accuracy of 90.29% 
with 3984 features. The Bayes method yielded 
better results, achieving an accuracy of 98.57% 
with 3031 features. The Ridge method achieved the 
same accuracy as the Bayes method, but with fewer 
selected features (2545 genes). The DT method 
achieved an accuracy of 95.81% with 5224 features. 
The RF method achieved an accuracy of 98.57% 
with 3031 features. The Bagging method, in its 
best performance, obtained an accuracy of 97.24% 
with 4536 features. The best result, 100% accuracy, 
was achieved by LightGBM with 4828 features. 
The Perceptron method achieved an accuracy of 
96.00% with 3300 features, and finally, the LDA 
method achieved an accuracy of 91.90% with 4834 
features in its best iteration.

After noting the above results, the Bat feature 
selection method was implemented using the same 
10 classifiers, but with the proposed method. In each 
repetition of the Bat algorithm, after recording the 
obtained accuracy, the roulette wheels are updated 
with new values for the classifiers. Therefore, in 
the next iteration, the probability of choosing a 
classifier that has yielded better results is higher. 
The results of executing the above process 10 times 
on the leukemia cancer dataset are shown in the last 
part of Table 2. As can be seen, LightGBM, Bayes, 
Bagging, and Ridge have been selected as the best 
classifiers in different iterations. Among these, 
LightGBM, with 5260 features, achieved the best 
result that was discussed in the previous section, 
100 percent. As a result, the best classifier has been 
found among the 10 used classifiers. In Figure 2(a), 
the change in the values of the selection probabilities 
of the classifiers in iterations 1, 10, 20, 30, 40, and 
50 is shown. Classifiers such as KNN and SVM, due 
to poor results, had their values remain constant on 
the Roulette Wheel. In contrast, classifiers such as 
LightGBM, with more repetitions, saw an increase 
in the probability of their selection.

With respect to the SRBCT cancer dataset (as 
shown in Table 3), the Bat feature selection method, 
in its optimal performance, achieved an accuracy of 
100%. Classifiers such as Bayes, Ridge, Random 
Forest (RF), Light Gradient Boosting Machine 
(LightGBM), and Perceptron yielded similar results. 
As can be observed in the final section of Table 3, 
our proposed method identified the Ridge classifier 
as the most effective for the feature extraction 
process using the Bat method, achieving the highest 

accuracy of 100%. Figure 2(b) illustrates the 
probabilities associated with selecting classifiers 
for the feature selection process, utilizing the Bat 
method on the Small Round Blue Cell Tumors 
(SRBCT) cancer dataset. Table 4 presents the 
outcomes of the aforementioned method on the 
prostate cancer dataset. It is evident that due to 
the substantial number of features (12,600 genes), 
the most favorable result is an accuracy of 93.44% 
with 9,889 features, which is associated with the 
Ridge classifier. The Light Gradient Boosting 
Machine (LightGBM) also achieved an accuracy of 
93.41% with 6,968 features. Upon examining the 
final section of Table 4, the accuracy and efficacy 
of our proposed method become apparent. Among 
the classifiers, LightGBM has achieved the highest 
accuracy of 94.12% with 7,527 features, thereby 
establishing itself as the optimal classifier in this 
context. The Bayes, Random Forest (RF), and 
Perceptron methods maintained a constant selection 
probability across different iterations due to their 
relatively weaker performance, as illustrated in 
Figure 2(c). Notably, the selection probability for 
the Light Gradient Boosting Machine (LightGBM) 
increased consistently across different iterations 
due to its superior performance.

In our analysis of the final dataset, Colon 
cancer (presented in Table 5), two classifiers 
demonstrated superior results compared to others 
across various executions. The Ridge classifier, 
with 923 features, and the Linear Discriminant 
Analysis (LDA) classifier, with 853 features out of 
2000 genes, both achieved an accuracy of 91.92%. 
In the final section of Table 5, our method identified 
LDA as the best classifier, selecting 914 features 
with an accuracy of 87.18%. Figure 2(d), similar 
to other Figures, displays the selection probabilities 
of classifiers across different iterations. To validate 
the effectiveness of our proposed method, we also 
implemented the entire process using the Gray Wolf 
feature selection method. The results are presented 
in Tables 6, 7, 8, and 9. As shown in Table 6, our 
Gray Wolf-based method selected the LightGBM 
classifier for the Leukemia dataset, achieving 100% 
accuracy, which matches the best result obtained 
from the implementation of Greg’s method with 
individual classifiers. For the SRBCT dataset, our 
method selected the Bayes classifier, achieving 
100% accuracy, as can be verified by referring 
to Table 7. This suggests that it may be the most 
suitable classifier for this data. Upon examining the 
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Prostate cancer dataset with our proposed method, 
the LightGBM classifier selected 7747 features and 
achieved an accuracy of 94.13%, as can be verified 
by referring to Table 8. This indicates that it is the 
optimal classifier. As can be seen in Table 9, the 
proposed Gray Wolf feature selection method also 
identified the best classifier for the Colon cancer 
dataset, LDA, which achieved an accuracy of 
91.92%.

Figure 3, illustrate the probabilities associated 
with selecting different classifiers across various 
iterations, utilizing the Gray Wolf feature selection 
method on a range of cancer datasets. Figure 3(a) 
presents the probabilities obtained at iterations 1, 
10, 20, 30, 40, and 50 using our proposed method 
for leukemia cancer. As can be seen, the probability 
of choosing KNN, LDA and Perceptron methods 
is less than other methods. Similarly, Figures 
3(b), 3(c), and 3(d) illustrate the probabilities 
obtained for SRBCT, Prostate, and Colon cancers, 
respectively.The experimental procedures were 
conducted on a computer system equipped with a 
2.40 GHz processor, 8.0 GB of RAM, and operating 
on the Windows 10 platform. Feature selection is 
crucial in machine learning methodologies, as it 
identifies irrelevant features, thereby enhancing 

accuracy and reducing computational time. Due 
to the superior results of wrapper-based methods 
compared to filter-based and embedding-based 
methods, meta-heuristic approaches have been 
employed in various feature selection problems. 
The fitness function that estimates the merit of the 
selected features by these methods is of significant 
importance and can greatly influence both accuracy 
and efficiency. The challenge lies in determining 
the most suitable algorithm for estimating the merit 
of a specific dataset. The proposed method was 
evaluated against a number of existing methods, 
with the comparative results presented in Table 
10. This comparison provides a comprehensive 
understanding of the performance of the proposed 
method relative to established methodologies.   

Fig. 2. Probabilities of selecting optimal classifiers for the feature selection process using the Bat algorithm on various 
cancer datasets.

Method Leukemia SRBCT Prostate Colon
Aydadenta [12] N/A N/A 88.97 85.87
Cilia (NN) [13] 99.44 N/A N/A 91.94
Wu [19] 97.81 N/A N/A 88.36
Jian [21] 100 100 N/A 95.00
Our proposed model 100 100 94.13 91.92

Table 10. The accuracy of our proposed method versus 
several existing methods for comparative analysis.
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4.    CONCLUSIONS

In the present study, we introduced a simple yet 
practical method to select the optimal classifier 
in the fitness function. Our proposed method 
demonstrates which classifier is best suited for 
the studied collection. To implement the proposed 
model, we utilized two metaheuristic algorithms 
based on the swarm intelligence of the bat and the 
gray wolf. We then conducted the feature selection 
process using 10 various classifiers separately and 
recorded the results. 

Subsequently, we integrated our proposed 
method into both the bat and gray wolf algorithms, 
performed the feature selection process with them, 
and noted the selected classifiers apart from the 
results. We analyzed Leukemia, SRBCT, Prostate, 
and Colon cancer datasets to evaluate our proposed 
method. Our findings indicate that our model 
identifies the best classifier for the desired dataset 
without incurring computational overhead while 
selecting the best features. Consequently, when 
using wrapper-based methods for feature selection, 
the optimal classifier can be selected for the 
investigated dataset.
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Table 2. The accuracy values obtained from the Bat feature selection algorithm were evaluated using ten different 
classifiers on the Leukemia dataset.

KNN SVM Bayes Ridge DT RF Bagging LightGBM Perceptron LDA Proposed

nFeatures

A
ccuracy

nFeatures

A
ccuracy

nFeatures

A
ccuracy

nFeatures

A
ccuracy

nFeatures

A
ccuracy

nFeatures

A
ccuracy

nFeatures

A
ccuracy

nFeatures

A
ccuracy

nFeatures

A
ccuracy

nFeatures

A
ccuracy

nFeatures

A
ccuracy

Selected 
C

lassifier

5311 83.43 5978 87.62 3535 98.57 4835 98.57 3960 94.57 3033 98.57 4536 97.24 5501 100 4879 90.38 5420 90.38 5258 98.57 Ridge

5087 84.76 3984 90.29 4542 98.57 5700 98.57 4606 93.05 3573 98.57 4491 97.12 4828 100 3496 95.90 5191 90.48 4481 98.67 LightGBM

5649 84.76 5071 87.62 3831 98.57 4274 98.57 4295 93.05 4843 98.57 4451 96.89 5980 98.57 5330 95.90 5068 90.48 5260 100 LightGBM

3611 83.43 5201 86.19 3331 98.57 4320 98.57 5745 93.05 5791 98.57 4429 97.01 5402 100 4220 94.57 5777 90.38 5271 98.57 Bayes

5065 83.43 5345 87.62 4523 98.57 5717 98.57 4059 94.48 3031 98.57 4578 97.24 5736 98.57 3300 96.00 3390 91.81 3347 98.57 Bagging

3767 84.76 3024 86.19 3965 98.57 5681 98.57 3449 93.05 5577 98.57 4459 96.76 5483 98.57 3375 94.57 3343 90.48 2971 9857 Bagging

4554 84.76 5519 86.19 3031 98.57 5880 98.57 3758 93.05 3954 98.57 4821 97.01 5237 98.57 4563 92.00 4834 91.90 3977 98.67 LightGBM

5354 84.76 2386 86.19 3460 98.57 2545 98.57 4138 93.05 3171 98.57 4675 97.12 4971 100 4257 90.67 5713 90.38 6082 98.57 Bayes

5754 84.76 5919 87.62 3052 98.57 3778 98.57 3501 93.14 4876 98.57 4875 96.93 4949 100 5244 90.57 4617 89.05 4054 98.57 Ridge

5567 83.43 4325 86.19 5887 98.57 4064 98.57 5224 95.81 3180 98.57 4931 97.03 5780 98.57 4967 95.90 3145 89.05 5707 98.57 Bagging

Table 3. The accuracy values obtained from the Bat feature selection algorithm were evaluated using ten different 
classifiers on the SRBCT dataset.

KNN SVM Bayes Ridge DT RF Bagging LightGBM Perceptron LDA Proposed

nFeatures

A
ccuracy

nFeatures

A
ccuracy

nFeatures

A
ccuracy

nFeatures

A
ccuracy

nFeatures

A
ccuracy

nFeatures

A
ccuracy

nFeatures

A
ccuracy

nFeatures

A
ccuracy

nFeatures

A
ccuracy

nFeatures

A
ccuracy

nFeatures

A
ccuracy

Selected 
C

lassifier

1456 90.15 899 97.57 847 100 1387 100 1879 92.72 1498 100 1270 98.82 1621 100 1032 100 1803 78.31 983 100 Ridge

1339 87.72 1194 97.57 1892 100 1129 100 1828 93.97 1704 100 1356 98.75 1649 100 1303 98.82 1053 74.93 1244 100 Ridge

1166 87.72 1774 97.57 1473 100 1731 100 1353 91.47 1596 100 1321 98.46 1670 100 1774 98.82 1581 72.28 1130 100 Ridge

1765 90.15 1893 97.57 1539 100 976 100 1459 93.97 1678 100 1293 98.78 1691 100 1300 98.82 1183 69.85 1584 100 Ridge

1058 87.79 1109 97.57 1932 100 1416 100 1064 92.79 1579 100 1311 98.64 1673 100 1774 98.82 1290 77.13 1614 100 Ridge

1413 87.79 1425 97.57 1898 100 1762 100 1107 92.72 1564 100 1342 98.26 1752 100 1950 98.82 1618 72.43 1897 100 Ridge

1052 87.72 1567 97.57 988 100 1581 100 1746 93.97 1626 100 1281 98.01 1638 100 1389 98.82 1795 71.10 1880 100 Ridge

1778 91.32 1130 97.57 1811 100 1354 100 1860 92.79 1653 100 1330 97.76 1652 100 1378 98.82 1851 71.18 1956 100 Ridge

1866 87.65 1791 97.57 1173 100 1275 100 1564 93.97 1527 100 1262 98.37 1679 100 1877 100 1577 75.00 1468 100 Ridge

1062 87.87 1820 97.57 1224 100 1438 100 1514 92.79 1546 100 1257 97.89 1713 100 1831 100 1457 72.35 1449 100 Ridge

Table 4. The accuracy values obtained from the Bat feature selection algorithm were evaluated using ten different 
classifiers on the Prostate dataset.

KNN SVM Bayes Ridge DT RF Bagging LightGBM Perceptron LDA Proposed

nFeatures

A
ccuracy

nFeatures

A
ccuracy

nFeatures

A
ccuracy

nFeatures

A
ccuracy

nFeatures

A
ccuracy

nFeatures

A
ccuracy

nFeatures

A
ccuracy

nFeatures

A
ccuracy

nFeatures

A
ccuracy

nFeatures

A
ccuracy

nFeatures

A
ccuracy

Selected 
Classifier

9813 80.93 7538 80.19 5135 56.67 9889 93.44 10222 85.34 7606 92.72 9872 91.93 6968 93.41 8080 81.75 9530 86.11 9081 92.70 LightGBM

6722 80.19 8170 81.64 7026 56.67 9628 92.70 8138 88.20 6561 91.75 9991 91.93 7002 90.91 5341 81.75 9229 84.66 8447 93.39 LightGBM

6054 79.47 8390 80.19 8445 56.67 9477 92.72 10645 86.75 8012 91.26 9615 91.47 6898 92.49 7102 80.26 9177 86.08 8910 92.01 Bagging

5772 80.19 7116 79.47 10422 56.67 8910 91.27 9828 87.76 7316 92.41 9646 91.78 6416 92.17 9230 85.24 7512 86.11 9984 92.67 LightGBM

10252 78.73 8780 80.19 8258 56.67 6571 92.70 9159 87.92 7189 91.43 9719 90.99 7137 91.46 7068 81.64 7029 87.59 7378 92.72 RF

7986 80.90 5266 79.44 9750 56.67 8987 92.72 10573 88.09 7145 92.66 9486 90.41 6459 91.73 10058 81.69 9102 84.60 7527 94.12 LightGBM

9315 80.21 8374 79.47 4581 56.67 10182 92.72 8845 86.26 7416 91.83 9629 91.38 6743 90.78 9160 84.68 8994 85.34 9827 91.93 LightGBM

7346 80.19 8284 80.16 8415 56.67 7353 91.27 8291 85.47 6985 92.58 9813 90.12 6972 91.49 6743 82.43 9347 86.85 5867 92.70 RF

6453 80.19 10165 80.93 5003 56.67 8407 92.72 8697 86.59 7373 91.22 9687 91.28 6842 92.83 10194 81.00 7067 84.63 6079 93.44 LightGBM

5013 80.19 6380 81.67 10520 56.67 9540 91.98 10357 86.38 7842 91.68 9649 91.09 6794 93.30 8382 83.17 8204 85.34 7043 91.24 RF

SUPPLEMENTARY DATA
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Table 5. The accuracy values obtained from the Bat feature selection algorithm were evaluated using ten different 
classifiers on the Colon dataset.

KNN SVM Bayes Ridge DT RF Bagging LightGBM Perceptron LDA Proposed
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A
ccuracy
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A
ccuracy
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A
ccuracy

nFeatures

A
ccuracy

nFeatures

A
ccuracy
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A
ccuracy
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A
ccuracy

nFeatures

A
ccuracy

nFeatures

A
ccuracy
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A
ccuracy

nFeatures

A
ccuracy

Selected 
C

lassifier

838 80.64 1109 87.31 1071 70.64 1238 90.26 916 88.97 1030 85.51 1161 88.97 1178 87.18 1331 87.05 1392 91.92 1013 87.05 LDA

1431 77.56 1386 84.23 1150 67.44 872 90.26 1680 84.10 1127 83.19 1073 90.13 1150 85.64 1505 88.59 732 91.92 1263 85.51 LDA

1126 77.56 1620 84.23 1346 69.23 1350 91.92 1139 85.64 1132 84.61 1692 87.18 912 88.85 1249 86.92 1519 91.92 1598 87.18 LDA

1069 77.44 1254 84.23 1117 69.10 1615 91.92 1510 84.10 1039 85.12 1529 88.42 1415 88.72 1571 87.05 853 91.92 1661 87.18 LDA

1242 79.10 1103 84.23 762 69.10 1534 90.38 1574 87.18 1143 83.49 1743 88.19 1107 85.64 1408 86.92 1520 91.92 914 87.18 LDA

924 77.56 722 85.77 1024 72.31 1108 91.92 1454 87.05 1087 84.67 1746 88.84 1197 87.31 1189 86.92 1450 90.38 807 85.51 LDA

1331 79.10 1650 84.23 1052 70.77 1495 90.26 923 85.64 1053 85.20 1673 87.76 1041 87.18 1136 86.92 1094 91.92 1701 85.51 LDA

1518 77.56 1567 85.77 1747 69.10 1370 91.92 1161 87.44 969 84.89 1694 88.39 1512 85.77 1699 86.92 967 90.38 1285 85.51 LDA

995 80.64 1104 84.23 818 70.64 1343 91.92 1566 85.64 993 84.51 1358 87.94 1477 88.72 1418 88.59 1051 90.38 1503 85.51 LDA

1406 79.10 1388 85.77 1341 70.64 923 91.92 1383 90.26 1057 83.24 1361 88.09 1250 85.64 1378 87.05 1476 91.92 1327 85.51 LDA

Table 6. The accuracy values obtained from the Gray Wolf feature selection algorithm were evaluated using ten 
different classifiers on the Leukemia dataset.

KNN SVM Bayes Ridge DT RF Bagging LightGBM Perceptron LDA Proposed
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A
ccuracy
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A
ccuracy
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A
ccuracy

nFeatures

A
ccuracy
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A
ccuracy

nFeatures

A
ccuracy
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A
ccuracy

nFeatures

A
ccuracy

nFeatures

A
ccuracy
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A
ccuracy

nFeatures

A
ccuracy

Selected 
C

lassifier

4191 83.43 4269 87.62 4145 98.57 3585 98.57 4311 93.05 4158 98.57 4356 97.24 4265 100 4577 94.48 4472 90.38 4177 98.57 Ridge

4263 84.76 3590 86.19 3550 98.57 3542 98.57 4480 91.62 3484 98.57 4174 97.24 4572 100 4529 95.90 4299 90.48 3504 98.57 Ridge

3565 83.43 3532 86.19 4183 98.57 3588 98.57 4554 94.57 3504 98.57 4528 97.24 4493 100 4532 93.24 4448 90.48 4070 98.57 LightGBM

4517 84.76 3641 86.19 3586 98.57 3605 98.57 4523 93.05 4221 98.57 4496 95.90 4592 100 4395 94.57 4434 90.48 4206 98.57 Ridge

4439 84.76 3553 86.19 3571 98.57 3625 98.57 4284 93.05 4320 98.57 4344 97.24 4468 98.67 4276 90.57 4564 91.81 4066 98.57 Ridge

4463 84.76 4262 87.62 3591 98.57 3538 98.57 4436 93.05 4078 98.57 4470 97.24 4231 98.67 4646 95.71 4363 90.48 4196 98.57 RF

4112 83.43 4405 87.62 3548 98.57 3518 98.57 4290 91.71 4205 98.57 4346 98.67 4334 100 4240 95.90 4233 90.38 4079 98.57 Ridge

4356 84.76 3756 86.19 3919 98.57 3585 98.57 4554 91.62 4290 98.57 4491 97.24 4250 98.67 4289 94.57 4461 91.81 4088 98.57 LightGBM

4436 84.76 4022 86.19 4205 98.57 4194 98.57 4348 93.05 4171 98.57 4263 97.14 4579 100 4396 95.90 4483 90.48 4128 98.57 Ridge

4558 84.76 3743 86.19 4037 98.57 3526 98.57 4451 91.62 4238 98.57 4618 97.24 4140 100 4502 95.90 4578 91.90 4502 100 LightGBM

Table 7. The accuracy values obtained from the Gray Wolf feature selection algorithm were evaluated using ten 
different classifiers on the SRBCT dataset.

KNN SVM Bayes Ridge DT RF Bagging LightGBM Perceptron LDA Proposed

nFeatures

A
ccuracy

nFeatures

A
ccuracy

nFeatures

A
ccuracy

nFeatures

A
ccuracy

nFeatures

A
ccuracy

nFeatures

A
ccuracy

nFeatures

A
ccuracy

nFeatures

A
ccuracy

nFeatures

A
ccuracy

nFeatures

A
ccuracy

nFeatures

A
ccuracy

Selected 
C

lassifier

1510 87.72 1151 97.57 1337 100 1151 100 1407 93.97 1115 100 1388 100 1335 100 1411 100 1421 72.43 1206 100 Ridge

1427 87.72 1349 97.57 1397 100 1152 100 1358 92.79 1155 100 1359 100 1176 100 1449 100 1447 73.46 1126 100 Bayes

1359 88.97 1132 97.57 1308 100 1130 100 1421 93.97 1131 100 1385 100 1127 100 1382 100 1427 71.25 1159 100 Ridge

1482 90.15 1180 97.57 1321 100 1131 100 1485 92.72 1180 100 1403 98.82 1344 100 1369 100 1505 72.35 1170 100 Ridge

1356 88.90 1146 97.57 1420 100 1186 100 1416 93.97 1152 100 1376 98.82 1340 100 1341 100 1506 72.35 1182 100 Ridge

1363 87.72 1346 97.57 1364 100 1168 100 1481 93.97 1174 100 1215 100 1334 100 1409 100 1506 71.10 1171 100 Ridge

1389 88.90 1155 97.57 1384 100 1159 100 1416 92.72 1155 100 1465 100 1439 100 1412 98.82 1504 72.35 1141 100 Ridge

1450 87.72 1135 97.57 1366 100 1158 100 1352 92.79 1139 100 1152 100 1155 100 1459 100 1382 73.53 1170 100 Ridge

1476 87.79 1155 97.57 1403 100 1160 100 1459 93.97 1160 100 1509 100 1398 100 1367 100 1327 73.46 1153 100 Ridge

1408 87.72 1165 97.57 1398 100 1140 100 1505 92.79 1119 100 1520 100 1147 100 1146 100 1391 72.28 1158 100 Ridge
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Table 8. The accuracy values obtained from the Gray Wolf feature selection algorithm were evaluated using ten 
different classifiers on the Prostate dataset.

KNN SVM Bayes Ridge DT RF Bagging LightGBM Perceptron LDA Proposed

nFeatures

A
ccuracy

nFeatures

A
ccuracy

nFeatures

A
ccuracy

nFeatures

A
ccuracy

nFeatures

A
ccuracy

nFeatures

A
ccuracy

nFeatures

A
ccuracy

nFeatures

A
ccuracy

nFeatures

A
ccuracy

nFeatures

A
ccuracy

nFeatures

A
ccuracy

Selected 
C

lassifier

7497 80.19 6686 67.62 6258 56.67 7554 92.01 7878 87.49 7925 93.41 7640 91.19 7474 94.13 7531 83.23 7841 86.11 7329 92.67 LightGBM

7886 79.47 7324 67.62 7013 56.67 7677 92.72 7875 86.03 7991 92.70 7631 90.73 7361 92.39 7778 86.19 8166 85.34 8002 92.90 Bagging

7644 80.19 6320 67.62 6345 56.67 7599 92.72 8235 87.51 7873 94.18 7631 90.16 7118 93.19 7836 86.83 7689 84.66 7510 91.98 RF

8071 80.19 7552 67.62 6328 56.67 7981 92.72 8163 85.34 7921 92.72 7199 90.72 7243 92.67 7710 81.01 8140 85.37 7837 91.96 RF

8000 80.93 7417 67.62 6393 56.67 7506 92.70 7672 86.75 7476 92.72 7618 90.49 7521 92.21 8022 84.71 6336 86.11 7747 94.13 LightGBM

7928 80.19 7325 67.62 7316 56.67 8146 92.70 7786 87.51 7824 92.72 7475 90.49 7419 92.17 8036 83.23 8061 85.40 7817 92.72 RF

7974 80.93 7411 67.62 7718 56.67 7518 92.72 7812 86.43 7639 94.17 7194 90.17 7589 92.55 7992 83.17 7976 85.37 7850 91.98 RF

7787 80.21 6336 67.62 7390 56.67 8061 92.72 7749 86.18 7782 93.78 7643 90.41 7364 93.73 6398 83.02 7866 86.08 7829 91.16 Bagging

7736 79.44 6317 67.62 6231 56.67 7876 92.72 7718 85.76 7716 93.91 7215 90.32 7008 93.58 8168 83.23 7984 84.66 7946 91.98 LightGBM

8051 80.19 6575 67.62 6240 56.67 7781 92.72 7728 86.74 7549 93.19 7821 90.94 6952 93.91 7738 86.14 7732 85.37 7797 92.65 LightGBM

Table 9. The accuracy values obtained from the Gray Wolf feature selection algorithm were evaluated using ten 
different classifiers on the Colon dataset.

KNN SVM Bayes Ridge DT RF Bagging LightGBM Perceptron LDA Proposed
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A
ccuracy
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A
ccuracy
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A
ccuracy
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A
ccuracy
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A
ccuracy
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A
ccuracy
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A
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A
ccuracy
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A
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A
ccuracy
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A
ccuracy

Selected 
C

lassifier

1260 77.56 1003 84.23 1241 70.77 1250 91.92 1269 87.31 1277 87.18 1318 87.31 1285 87.18 1260 87.05 1194 91.92 1168 90.26 LDA

1242 77.44 1027 84.23 1221 70.64 1301 91.92 1215 84.10 1320 85.64 1257 88.85 1198 87.18 1313 86.92 1169 91.92 994 88.72 LDA

1211 77.56 1223 85.77 1268 70.64 1157 90.38 1268 85.64 1241 87.18 1286 88.72 1227 87.18 1312 86.92 1223 91.92 1201 88.72 LDA

1285 78.97 1169 85.77 1251 70.77 1209 91.92 1221 85.64 1283 88.72 1261 90.38 1257 85.64 1243 86.92 1276 91.92 1167 90.26 LDA

1014 77.56 989 84.23 1221 70.64 1284 91.92 1257 85.64 1288 88.59 1288 88.72 1206 86.92 1297 88.59 1272 91.92 1169 88.72 LDA

1237 80.64 1180 85.77 1200 70.64 1183 90.38 1268 85.51 1186 88.07 1133 88.85 1212 85.64 1017 86.92 1195 91.92 1254 90.26 LDA

1254 77.56 1028 84.23 1215 70.77 1312 90.38 1260 87.31 1147 87.92 1252 88.72 1233 87.18 1214 88.59 1277 91.92 1314 91.92 LDA

1254 79.10 1015 84.23 1201 70.64 1007 90.38 1198 85.64 1223 87.49 1255 88.59 1249 87.18 1184 87.05 1199 91.92 1266 87.31 Bagging

1009 77.56 1012 85.77 1178 70.64 1244 91.92 1305 85.64 1279 87.41 1245 87.31 1242 85.64 1226 87.05 1182 91.92 1193 88.72 LDA

1308 78.97 1012 84.23 1172 70.64 1164 91.92 1226 87.18 1257 87.19 1221 88.59 1215 87.18 1186 88.59 1178 91.92 1254 90.38 LDA
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